

AiF-IGF-Vorhaben: "Wärmedämmung von Vakuumöfen" 01.01.2018 - 31.12.2019

Entgasungsverhalten von oxidischen Dämmstoffen bei Raumtemperatur

Vortrag von: Reinhild Arnold

2. Aachener Ofenbau- und Thermoprozess-Kolloquium 11.10.2019

Einleitung

- ➤ Entgasungsverhalten von Dämmstoffen → wichtig für Betrieb von Vakuumöfen
- Vakuumöfen für Wärmebehandlungen metallischer wertintensiver Werkstücke (z.B. Fahrzeug- und Turbinenteile)
 - → wachsende Bedeutung
- Wichtige Kriterien für Auslegung einer thermischen Vakuumanlage:
 - Kosten
 - Entgasungsverhalten der eingesetzten Materialien
 - thermische Trägheit der Anlage
 - u.a.
- aktueller Stand für Dämmung von Vakuumöfen: kohlenstoffbasierte Hart- oder Weichfilze (Grafitfaserdämmstoffe), kaum oxidische Dämmstoffe

Einsatz oxidischer Dämmstoffe

Vorteile oxidischer Dämmstoffe

- Kostensenkung
- Wandstärkenreduzierung
- geringere Wärmeleitfähigkeit

Mögliche Hemmnisse für einen Einsatz:

- Kontaktreaktionen zwischen oxidischen Werkstoffen und Graphit
- geringere Temperaturbeständigkeit
- Ad- und Desorption von H₂O, O₂ und CO₂
- Veränderte Restgaszusammensetzung und Qualität des Vakuums im Vergleich zu Graphit
- Veränderte Evakuierungszeiten auf Grund anderer Porenstrukturen

Gegenüberstellung graphitische – oxidische Dämmung

	graphitisch		oxidisch	
Kosten (für 40mm Dicke)	hoch 500 - 800 €/m²	-	niedriger 50 - 400 €/m²	+
Anwendungs- temperaturen	hoch bis 2000°C	+	niedriger 800 – 1700°C	-
Wärmeleitfähigkeit bei 600°C [W/mK]	hoch 0,3	_	Faserdämmstoffe: niedrig 0,13 – 0,15 mikroporöse Dämmstoffe: noch niedriger 0,031 – 0,039	+

wärmetechnische und wirtschaftliche Vorteile beim Einsatz von oxidischen Dämmstoffen in Kombination mit Grafitfilzen sind möglich

Zielstellung des Forschungsthemas: Wärmedämmung von Vakuumöfen

- Weiterentwicklung von Vakuumöfen hinsichtlich verbesserter Wärmedämmung bei gleicher Baugröße
- Erweiterung des technischen Wissens zum kombinierten Einsatz von graphitischen und oxidkeramischen Wärmedämmmaterialien bzgl. Qualität des Vakuums, Reaktionen an Grenzflächen, Restgaszusammensetzung

Arbeitsziele:

- Identifizierung geeigneter Dämmstoffkombinationen (graphitisch/oxidisch)
 - beständig im Dauerbetrieb
 - keine negative Beeinflussung des Vakuums und der Restgaszusammensetzung
 - Verbesserte Energie- und Kosteneffizienz
 - → hier nur Betrachtung der Untersuchungen bei Raumtemperatur

ausgewählte Dämmstoffgruppen für thermische Anlagen

Oxidische Dämmstoffe

Grafitische Dämmstoffe

Hochtemperaturwollen

Faserstoffe:

- Basis Al₂O₃,
 SiO₂...(AES,
 ASW, PCW)
- geringe Dichte,
- hoher TWB,
- niedrige WLF

Vakuumformteile

Formteile aus Faserdämmstoffen mit Bindemitteln verfestigt

Mikroporöse Dämmstoffe

Formteile:

- Basis SiO₂oder Al₂O₃-Nanopulvern,
- sehr niedrige WLF

Feuerleichtsteine

Poröse, geformte feuerfeste Erzeugnisse:

- Basis Al₂O₃, SiO₂, CaO ...

Graphitfilze

Hart- oder Weichfilze:

- Basis C;
- hohe WLF
- hohe TWB

Auswahl der Dämmstoffe für die Untersuchungen

	Roh- dichte	кт	max. Daueranwendung	Wärmeleitfähigkeit bei 600°C			
	[kg/m³]	[°C]	[°C]	[W/(mK)]			
Faserdämmstoffe/ Hochtemperaturwollen:							
AES Calzium-/Magnesiumsilikatwolle	112	1250	1100	0,14			
ASW Aluminiumsilikatwolle	128	1400	1250	0,15			
PCW polykristalline Wolle	90	1650	1600	0,13			
Vakuumformteile							
AES (1)	220	1100	990	0,12			
AES (2)	300	1300	1280	0,16			
ASW	300	1250	1150	0,15			
PCW	400	1700	1700	0,18			
Mikroporöse Dämmstoffe:							
pyrogene Kieselsäure	220	1000	900	0,031			
pyrogene Tonerde	350	1200	1080	0,039			
Feuerleichtsteine							
Basis: Al ₂ O ₃	700	1700	1500	0,6			
Basis: Al ₂ O ₃ + SiO ₂	900	1540	1200	0,34			
Graphitfilz							
Graphithartfilz	180	2200	2200	0,3			
Graphitweichfilz	140	2200	2200	0,3			

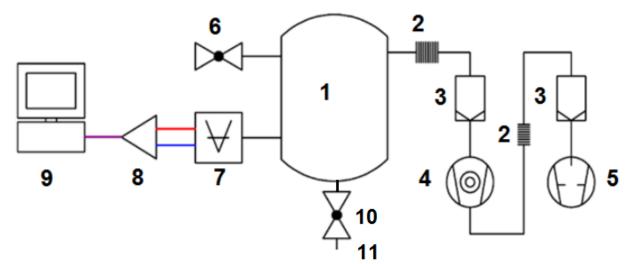
Verfeinerung für die Zielstellung der kalten Entgasung

Zielstellung der kalten Entgasungsversuche

- Ermittlung der Evakuierungsdauer, Druck-Zeit-Charakteristik
- Restgaszusammensetzung
- Ermittlung spezifischer Größen bei der Entgasung unter vergleichbaren Bedingungen
- Eingrenzung von Materialkombinationen

Konzeption und Bau einer Vakuumtestkammer zur Materialcharakterisierung

- Für Probenabmessungen 250 x 120 x 80 mm
- Vakuum bis 10⁻⁵ mbar (leere Kammer)
- Raumtemperatur

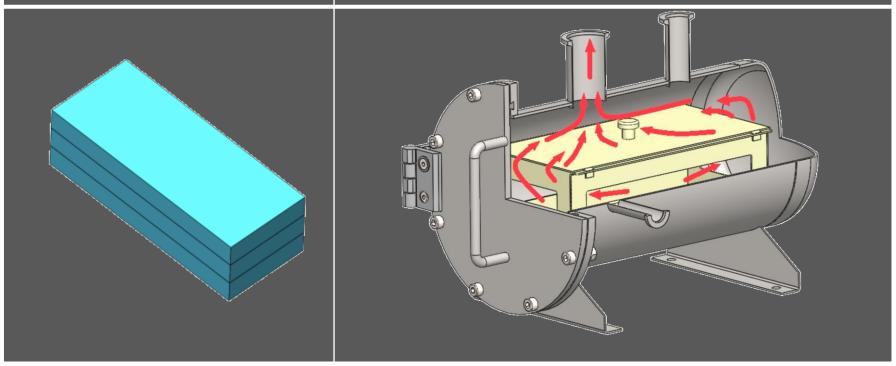


Aufbau der Versuchsanlage für kalte Entgasung

3D-Modell und Fließschema der Versuchsanlage

- 1 Vakuumprobenkammer (Kammervolumen ca. 10 dm³)
- 2 Verbindungsschlauch
- 3 Luftfilter
- 4 Turbomolekularpumpe (Turbovac 50; Saugvermögen: 198 m³/h)
- Drehschieberpumpe
 (Trivac D 16 B; Saugvermögen: 16,5 m³/h)
- 6 Belüftungsventil
- 7 Druckmesssensor
- 8 AD-Wandler
- 9 Datenerfassung
- 10 Absperrventil
- **11** N₂-Spühlung

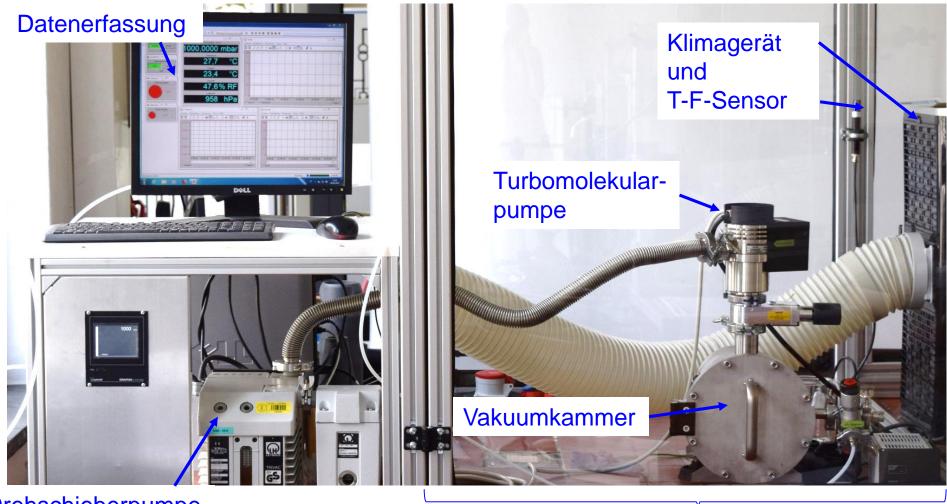
Aufbau der Versuchsanlage für Entgasungsversuche


Probenkammer für Entgasungsversuche bei Raumtemperatur

Proben Abmessungen:

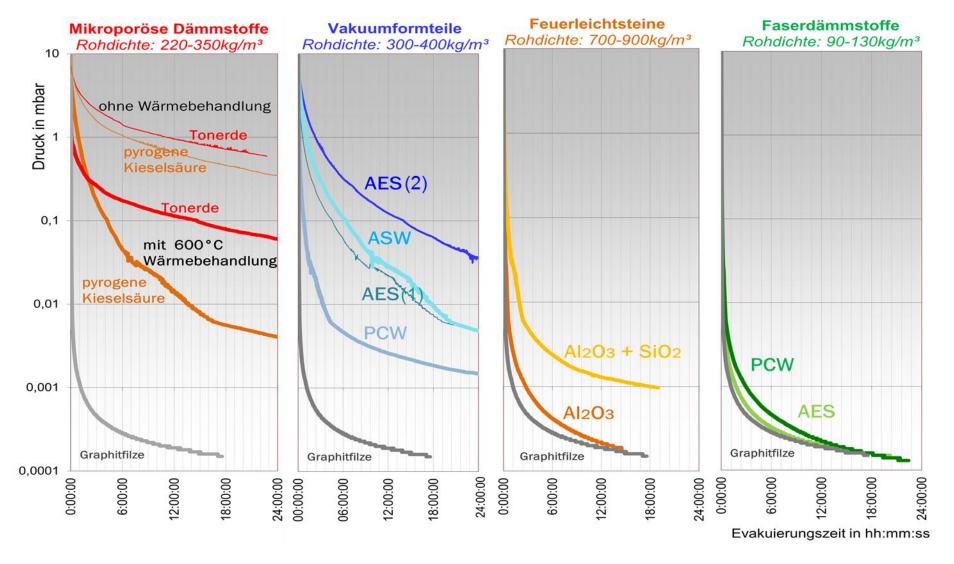
250 x 100 x 25 [mm] Volumen ca. 2 [Liter]

Probenkammer Abmessung:

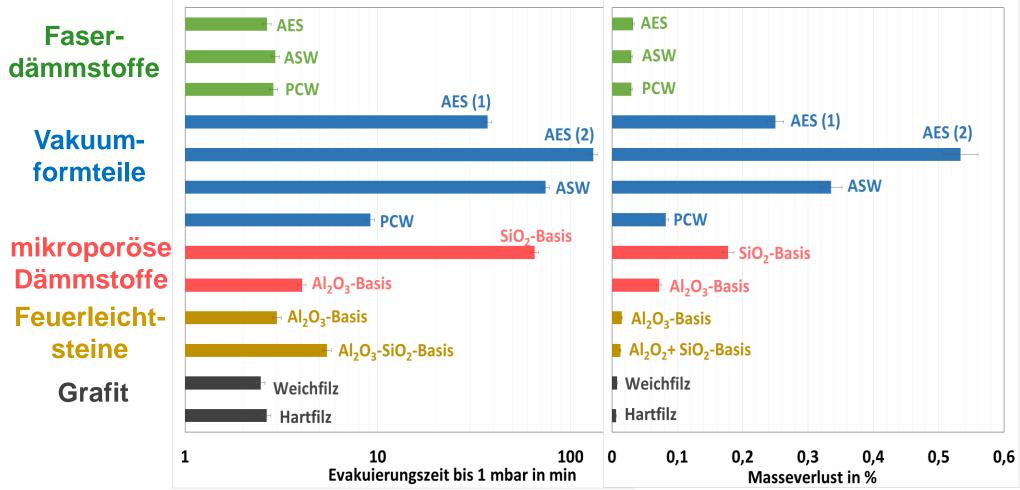

Innen: B x H x L: 120 x 83 x 260 [mm]

Klimakammer-Versuchsstand für die kalte Entgasung

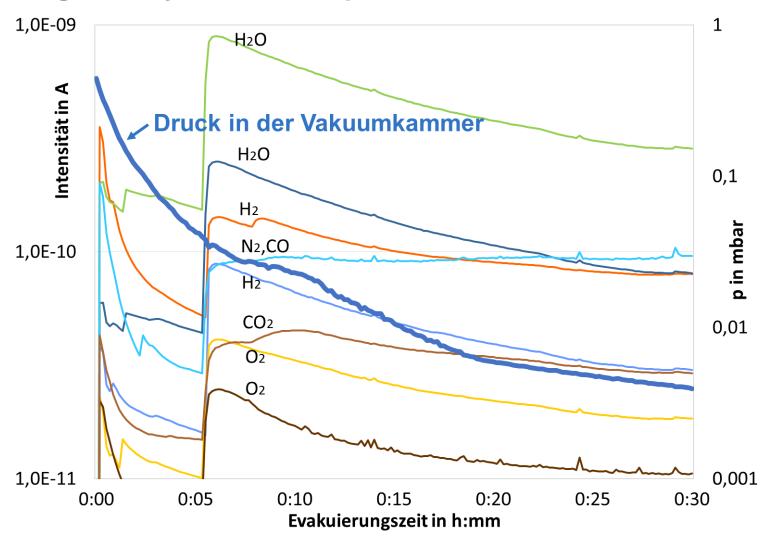
Drehschieberpumpe


Klimakammer

Entgasungsverhalten der Dämmstoffe bei Raumtemperatur


Vergleich der einzelnen Dämmstoffgruppen mit Graphit

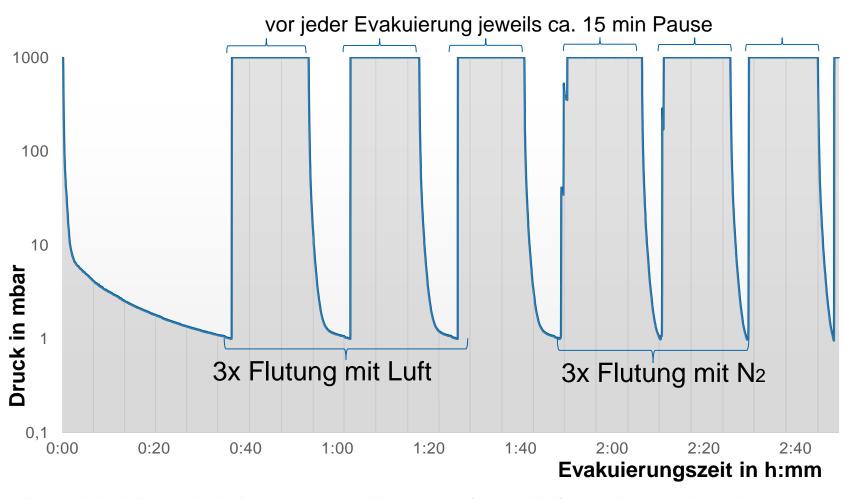
Evakuierungszeiten bis 1 mbar und Masseverluste



Evakuierungszeiten bis 1 mbar korrelieren mit Masseverlusten, dabei gilt:

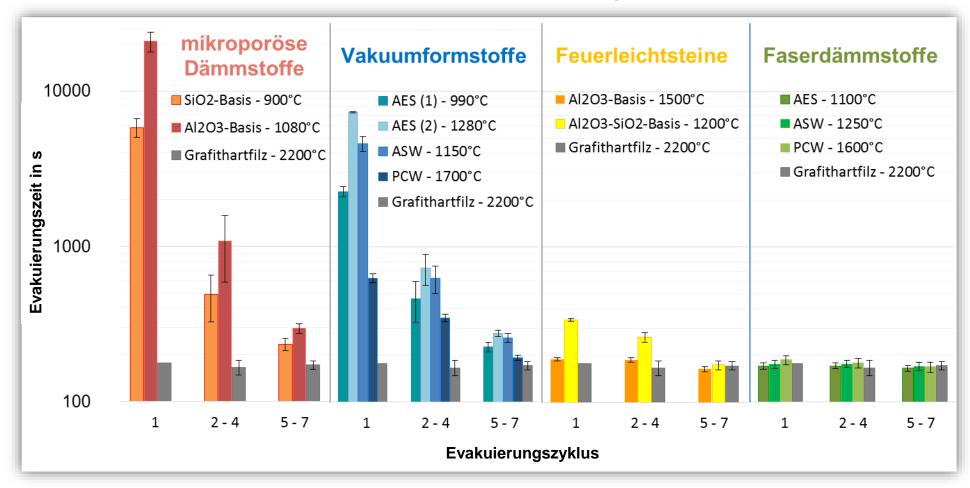
Graphitfilz < oxid. Dämmwolle < Leichtsteine < Vakuumformteil < mikroporöse Dämmstoffe

Restgasanalyse: am Beispiel eines ASW-Faserdämmstoffes


Beispiel-Diagramm: Restgasanalyse mit dem Quadropolmassenspektrometer Dominierende Massenzahlen: 18 (H₂O); 17 (H₂O), 1+2 (H₂); 28 (N₂,CO); 16+32 (O₂), 44 (CO₂)

Verhalten bei zyklischer Entgasung bis 1 mbar, nach Flutungen mit Luft und Stickstoff

Beispiel p-t-Diagramm für AES(1)-Vakuumformteil, bei 21 °C, 47% rLF



Evakuierungszeiten für kalte zyklische Entgasung

bis 1 mbar nach Flutungen mit Luft bzw. Stickstoff oxidische Dämmstoffe (Mittelwerte) im Vergleich zu Grafithartfilz

Zyklus 1: Erstentgasung; Zyklen 2-4: nach Luftspülung; Zyklen 5-7 nach N₂-Spülung

Zusammenfassung

- Oxidische D\u00e4mmwollen und Graphitfilz haben vergleichbare Evakuierungszeiten
- Die Evakuierungszeiten der Dämmstoffgruppen verhalten sich wie folgt:

Graphitfilz

< oxidische Dämmwolle

< Leichtsteine

< Vakuumformteile

< mikroporöse Dämmstoffe

- Die Masseverluste korrelieren mit den Evakuierungszeiten bis 1 mbar
- ➢ Bei zyklischer Spülung und N2-Spülung können die Evakuierungszeiten deutlich verkürzt werden

Weitere Untersuchungen

- Hochtemperaturuntersuchungen im Vakuumofen
- Durchführung der Versuche an Einzelmaterialien und Materialkombinationen (graphitisch/oxidisch)
 - Bestimmung von Druck und Restgaszusammensetzung als Funktion von Temperatur und Zeit
 - Masseverluste
- Durchführung von zyklischen Langzeitversuchen: Auswahl der favorisierten Dämmstoffe und Kombinationen;
- Verifizierung der Ergebnisse an einem Demonstrator

Vielen Dank für die Aufmerksamkeit!

TU Bergakademie Freiberg, Institut für Wärmetechnik und Thermodynamik Lehrstuhl für Gas- und Wärmetechnische Anlagen Gustav-Zeuner-Str. 7, D-09599 Freiberg

Ansprechpartner:

Prof. Dr.-Ing. Hartmut Krause

Telefon +49 (0) 3731/39 3940 Fax +49 (0) 3731/39 3942 hartmut.krause@iwtt.tu-freiberg.de

Reinhild Arnold

Telefon +49 (0) 3731/39 2177 Fax +49 (0) 3731/39 3942 reinhild.arnold@iwtt.tu-freiberg.de