

Dekarbonisierung von Prozesswärme: Technisches Potential in der Metall- und Mineralindustrie

Dr.-Ing. Christian Schwotzer Felix Kaiser, M.Sc. Dr.-Ing. Matthias Rehfeldt Univ.-Prof. Dr.-Ing. Herbert Pfeifer

3. Aachener Ofenbau- und Thermoprozesskolloquium

Aachen, 7. - 8. Oktober 2021

Inhalte und Themen

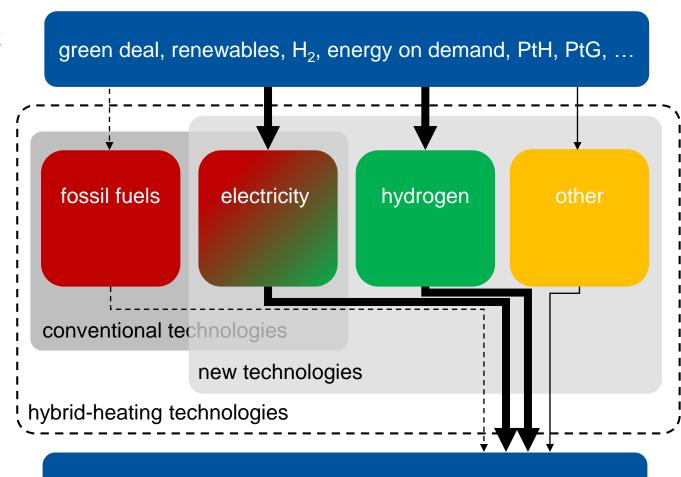
- Thermoprozesstechnik im Kontext der Energiewende
- UBA-Studie "CO₂-neutrale Prozesswärmeerzeugung"
- Technikbeispiele aus der Branchen- und Technologieanalyse
 - Anwendung 1: Härtereitechnik
 - Anwendung 2: Umformtechnik
 - Anwendung 3: Behälterglasherstellung
- Zusammenfassung und Forschungsbedarf

Thermoprozesstechnik im Kontext der Energiewende

Political framework

New pathways

Energysystem


Transformation

Technologies

New concepts

Industry

Transformation

transformation towards low carbon process heat generation

UBA-Studie: Zielsetzung

Umstellung auf eine CO₂-neutrale Prozesswärmeerzeugung in der Industrie bis 2050 anhand ausgewählter Branchen/Techniken, mit den Schwerpunkten:

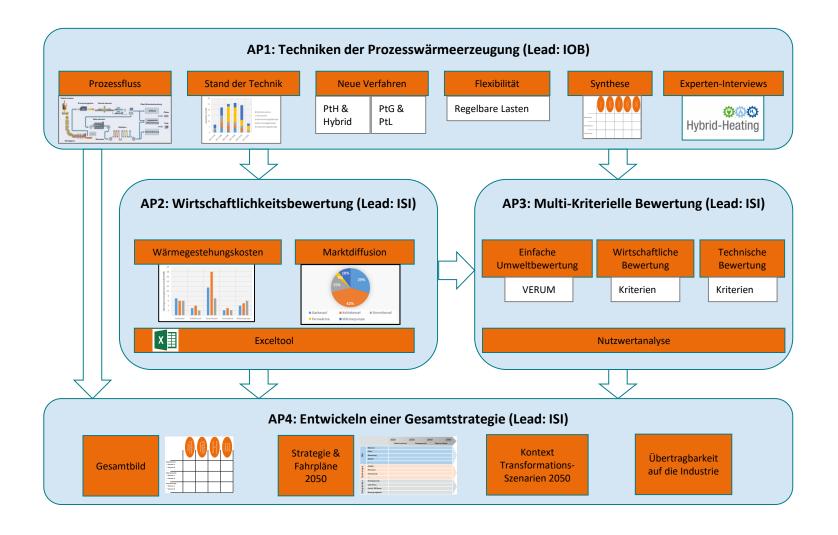
- Stand der Technik und F&E Bedarf
- Wirtschaftlichkeit
- Ganzheitlicher Vergleich (Technisch, wirtschaftlich, ökologisch)
- Gesamtbild Status-Quo und Strategie zur Transformation der Prozesswärmeerzeugung

Projektstart: April 2019, Projektlaufzeit: 3 Jahre

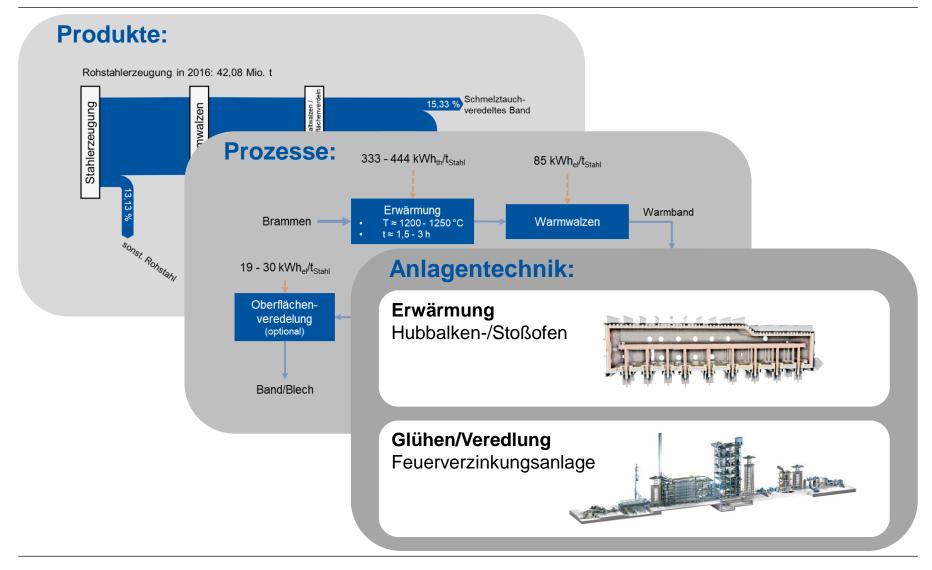
Projektpartner: Fraunhofer ISI, IOB – RWTH Aachen University

UBA-Studie: Branchen im Fokus

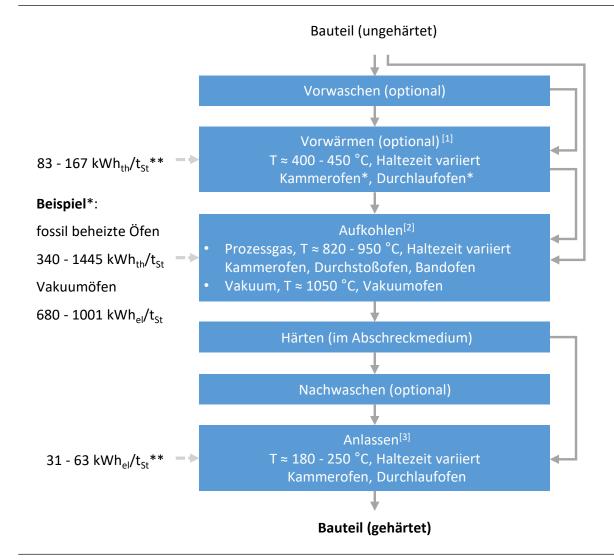
Branchen und Verantwortlichkeiten


Dampferzeuger	Nahrungsmittelindustrie Chemische Industrie	Fraunhofer ISI		
	Papierindustrie			
	Keramik inkl. Ziegel			
industrie	Kalk	IOB Institut für Industrieofenbau und Wärmetechnik UNIVERSITY		
Mineral-	Zementindustrie	Institut für RWTHAACHEN		
	Glasindustrie			
	Härtereitechnik			
Metallindustrie	Schmiedeindustrie			
	Wärme- und Glühöfen Stahl-Walzwerke	IOB Institut für Industrieofenbau und Wärmetechnik		
	NE-Metallindustrie (Al, Cu,)	I DANTHAACHEN		
	Gießereiindustrie			

UBA-Studie: Übersicht der Arbeitspakete



UBA-Studie: Lösungsansatz Branchen-/Technologieanalyse



Exemplarische Prozesskette für das Einsatzhärten (vereinfacht)

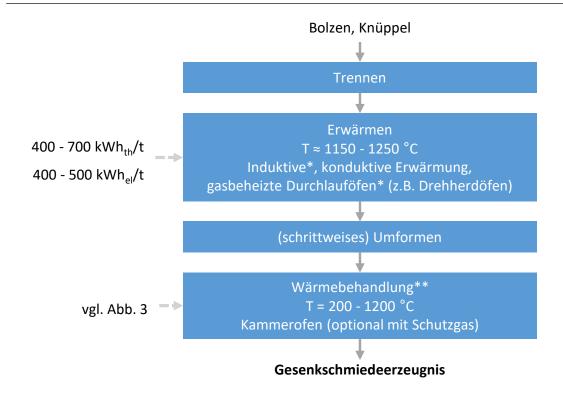
th. = thermisch; el. = elektrisch; St. = Stahl

Anmerkungen:

* Exemplarische Werte für einzelne Anlagen mit spezifischen Betriebsparametern (z.B. die Haltezeit) zur Verdeutlichung der Heterogenität des Anlagenparks. Die Werte besitzen keine Allgemeingültigkeit und variieren je nach Werkstoff und Anforderungen. Neben fossil beheizten Anlagen wie Kammerofen, Durchstoßofen, Bandofen sind nach dem Stand der Technik vielfach auch elektrisch beheizte Anlagen verfügbar.

** Annahme: Theoretischer Wert berechnet aus der Werkstoffenthalpie und einem Anlagenwirkungsgrad von 40 % bis 80 % ohne Berücksichtigung einer Haltephase. Der Energiebedarf im Realbetrieb kann deutlich von diesen Werte abweichen.

Quellen:


[1-3]: Prozesskette nach DIN EN ISO 683-3, Anlagenkenndaten nach Edenhofer, B.; Joritz, D.; Rink, M.; Voges, K.: Carburizing of steels, in: *Thermochemical Surface Engineering of Steels*, Elsevier, 2015, S. 485–553.

Exemplarische Prozesskette für das Gesenkschmieden (vereinfacht)

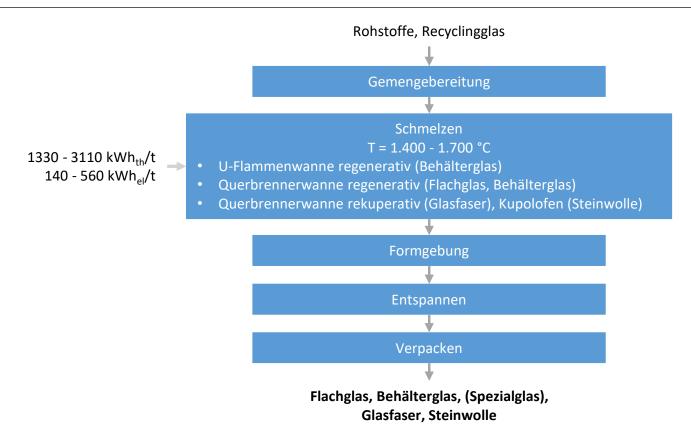
th. = thermisch; el. = elektrisch

Anmerkungen:

* Der Prozessschritt Erwärmen wird überwiegend mit induktiven Erwärmungsanlagen durchgeführt (Annahme ca. 80 % - 85 % der Produktionsmenge)
**diverse Zeit-, Temperaturzyklen möglich

Quellen: (Daten nach)

Herbertz, R.; Hermanns, H.; Höh, J.:
Energieeffizienz in der Massivumformung I,
Hrsg. v. SchmiedeJOURNAL, 09.2012.
Ade, H.: Massivumformung in Deutschland Eine energieintensive energieeffiziente
Branche, Hrsg. v. Industrieverband
Massivumformung e. V., Hagen, 12.2017.
Pfeifer, H.; Nacke, B.; Beneke, F. (Hrsg.):
Praxishandbuch Thermoprozesstechnik Band
2: Anlagen, Komponenten, Sicherheit, 2, Aufl.,
Essen, Vulkan Verlag, 2011.


Essen, Vulkan Verlag, 2011.
Emec, S.; Stock, T.; Bilge, P.; Tufinkgi, P.;
Kaden, C.; Seliger, G.: *Analyse von*Potenzialen der Material- und Energieeffizienz
in ausgewählten Branchen der Metall
verarbeitenden Industrie, 3. Auflage 2016,
Hrsg. v. VDI Zentrum Ressourceneffizienz
GmbH, 06.2013.

Exemplarische Prozesskette für die Glasherstellung (vereinfacht)

th. = thermisch; el. = elektrisch

Quellen: eigene Darstellung nach Fleiter, T.; Schlomann, B.; Eichhammer, W. (Hrsg.): Energieverbrauch und CO₂-Emissionen industrieller Prozesstechnologien - Einsparpotenziale, Hemmnisse und Instrumente, Stuttgart, Fraunhofer-Verlag, 2013.

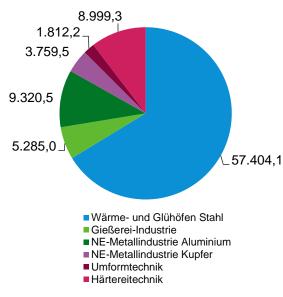
Kennzahlen zur Auswahl der Anwendungen und Referenztechniken

Abschätzung charakteristischer Anlagenkennzahlen zur Auswahl der betrachteten Anwendungen und Referenztechniken "Glasindustrie" in Deutschland

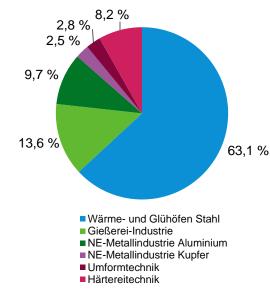
Anlagentypen	Jährliche Produktionsmenge ¹⁾		Jährlicher Energieverbrauch		Energiebedingte CO ₂ -Emissionen ^{2), 3)}		
Gesamt	8,0 Mio. t Anteil		9.669 - 13.708 GWh Anteil		2.097 - 2.956 Tsd. t	Anteil	
U-Flammenwanne regenerativ (fossil)	3.368 Tsd. t	42 %	3.305 - 4.586 GWh	33 - 34 %	668 - 926 Tsd. t	31 - 32 %	
Querbrennerwanne regenerativ (fossil)	3.117 Tsd. t	39 %	4.103 - 6.149 GWh	42 - 45 %	829 - 1.242 Tsd. t	40 - 42 %	
Oxyfuel Schmelzwanne (fossil)	876 Tsd. t	11 %	904 - 1.331 GWh	9 - 10 %	183 - 269 Tsd. t	9 %	
Kupolofen (fossil)	349 Tsd. t	4 %	592 GWh	4 - 6 %	232 Tsd. t	8 - 11 %	
Querbrennerwanne rekuperativ (fossil)	175 Tsd. t	2 %	384 - 459 GWh	3 - 4 %	78 - 93 Tsd. t	3 - 4 %	
Querbrennerwanne Spezialglas (fossil)	62 Tsd. t	1 %	281 - 342 GWh	2 - 3 %	57 - 69 Tsd. t	2 - 3 %	
Voll-elektrische Schmelzwanne	92 Tsd. t	1 %	100 - 249 GWh	1 - 2 %	50 - 125 Tsd. t	2 - 4 %	
Verteilung							
Anteil Anlagen mit elektrischer Energie beheizt			1 - 2 %		2 - 4 %		
Anteil Anlagen mit fossiler Energie beheizt				98 - 99 %		96 - 98 %	
Davon im Rahmen der Studie betrachteten Anlagentypen (fett)				77 - 80 %		73 - 77 %	

¹⁾ Es wird die Produktionsmenge von geschmolzenem Glas angegeben. Sie wird auf Grundlage der verkaufsfähigen Menge Glas abgeschätzt, die etwa 90 % der geschmolzenen Tonnage entspricht.

Quellen: (Bundesverband Glasindustrie e. V. 2020), (Expert:inneninterview 2020y), (Gitzhofer 2007; Umweltbundesamt (UBA) 2020; VDI 2578)

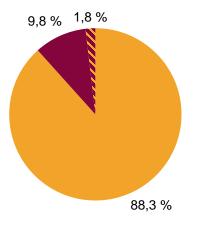


²⁾ Die prozessbedingten CO₂-Emissionen betragen in der Behälterglasindustrie 81 kg CO₂/t_{Glas} (ca. 25 % der gesamten CO₂-Emissionen) und in der Flachglasindustrie 187 kg CO₂/t_{Glas} (ca. 30 % der gesamten CO₂-Emissionen)


³⁾ Es wird nur der Hauptenergieträger betrachtet. Für die Berechnung der CO₂-Emissionen führt das zu einer geringeren Bewertung der energiebedingten CO₂-Emissionen für erdgasbeheizte Anlagen, da der Anteil der elektrischen Energie durch eine EZH nicht berücksichtigt wird. Gleichzeitig bedeutet es, dass die durch die Verbrennung von Erdgas verursachten CO₂-Emissionen geringfügig kleiner ausfallen.

Kennzahlen für die Anlagentypen der Metall- und Mineralindustrie im Vergleich

Metallindustrie – Jährliche branchenspezifische Produktionsmenge in Tsd. t/a

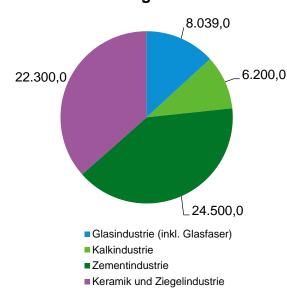


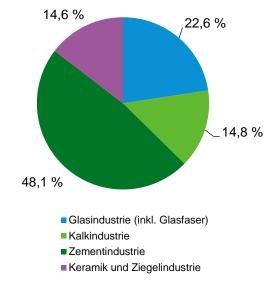
Metallindustrie – Verteilung jähr. Gesamtenergieverbrauch nach Branchen

Anmerkungen: Mittelwerte auf Basis der Branchenanalysen, Gesamtenergieverbrauch 33.501 GWh/a

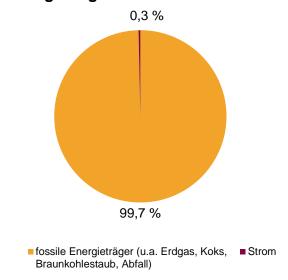
Metallindustrie – Verteilung jähr. Gesamtenergieverbrauch nach Energieträgern

- fossile Energieträger (Erdgas, Koks)
- Strom
- hybrid Beheizung (fossil/elektrisch)





Kennzahlen für die Anlagentypen der Metall- und Mineralindustrie im Vergleich


Mineralindustrie – Jährliche branchenspezifische Produktionsmenge in Tsd. t/a

Mineralindustrie – Verteilung jähr. Gesamtenergieverbrauch nach Branchen

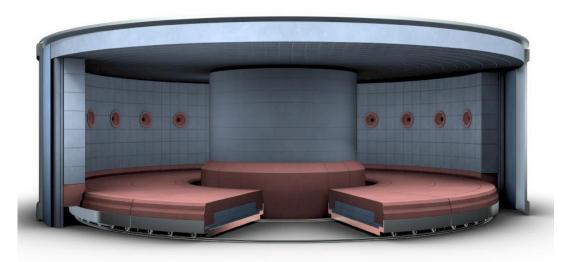
Mineralindustrie – Verteilung jähr. Gesamtenergieverbrauch nach Energieträgern

Anmerkungen: Mittelwerte auf Basis der Branchenanalysen, Gesamtenergieverbrauch 51.748 GWh/a

Referenz- und Alternativtechniken Beispiel Härtereitechnik

Bandofenlinie zum Wärmebehandeln von Schüttgütern

Technik und Technologie	
Referenztechnik	Konti. Aufkohlungs-/Austenitisierungsofen mit Erdgasbeheizung
Alternative Beheizungstechnologie(n)	Elektrifizierung (im Strahlheizrohr) Wasserstoffbeheizung (im Strahlheizrohr)
Alternativtechnike(n)	Kontinuierlicher Aufkohlungs-/Austenitisierungsofen mit elektrischer Beheizung Kontinuierlicher Aufkohlungs-/Austenitisierungsofen mit Wasserstoffbeheizung

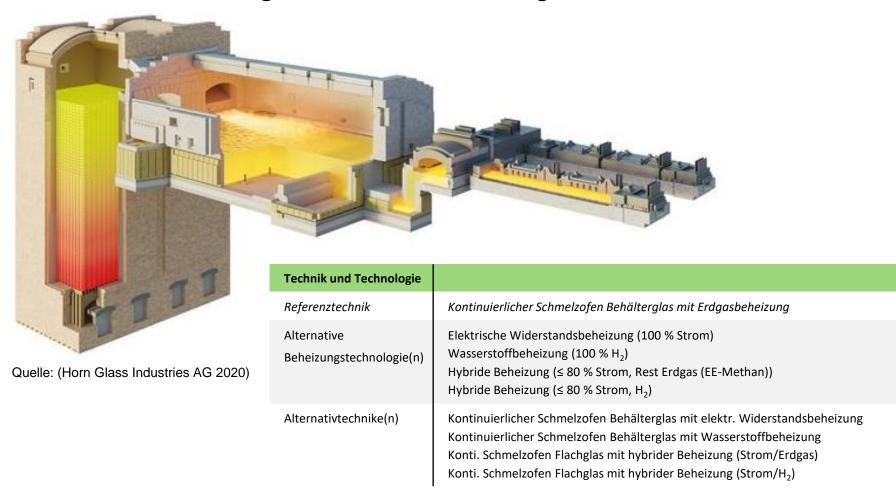


Referenz- und Alternativtechniken Beispiel Umformtechnik

Drehherdofen / Drehtellerofen

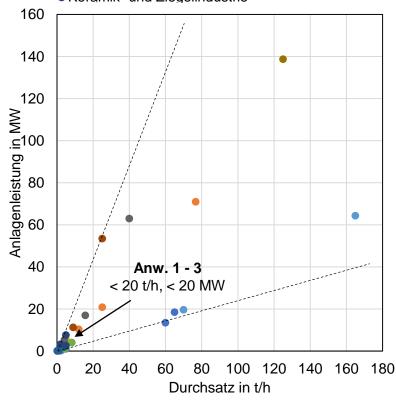
Quelle: www.rath-group.com

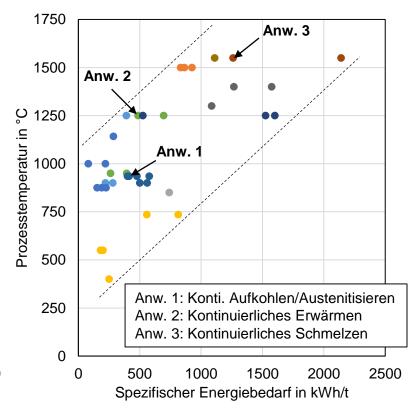
Technik und Technologie	
Referenztechnik	Kontinuierlicher Erwärmungsofen Schmiedebauteile mit Erdgasbeheizung
Alternative Beheizungstechnologie(n)	Hybride Beheizung (Strom (Widerstandsbeheizung), Erdgas(EE-Methan))) Hybride Beheizung (Strom (Widerstandsbeheizung), H ₂) Wasserstoffbeheizung
Alternativtechnik(en)	Kontinuierlicher Erwärmungsofen Schmiedebauteile mit hybrider Beheizung (Strom/Erdgas) Kontinuierlicher Erwärmungsofen Schmiedebauteile mit hybrider Beheizung (Strom/ $\rm H_2$) Kontinuierlicher Erwärmungsofen Schmiedebauteile mit Wasserstoffbeheizung



Referenz- und Alternativtechniken Beispiel Glasindustrie

U-Flammenwanne mit regenerativer Luftvorwärmung





Anwendungen der Metall- und Mineralindustrie im Vergleich

- Wärme- und Glühöfen Stahl-Walzwerke
- Gießerei-Industrie
- NE-Metallindustrie: Kupfer
- Härtereitechnik
- Kalk
- Keramik- und Ziegelindustrie

- Gießerei-Industrie
- NE-Metallindustrie: Aluminium
- Umformtechnik
- Glasindustrie inkl. Glasfaser
- Zement

Exemplarische Kenndaten für die ökonomische Betrachtung Anwendung 3: Kontinuierliches Schmelzen Behälterglas

Technik	Referenztechnik	Alternativtechnik 1	Alternativtechnik 2	Alternativtechnik 3	Alternativtechnik 4	Einheit	Quellen
Beheizungstechnologie	Erdgasbeheizung (inkl. EZH) ^{a)}	Elektrifizierung ^{b)}	Wasserstoffbeheizung	Hybride Beheizung (Strom/Erdgas (EE- Methan))	Hybride Beheizung (Strom/- Wasserstoff)		
Thermoprozessanlagen	U-Flammenwanne Regenerativ	Vollelektrische Schmelzwanne	U-Flammenwanne Regenerativ	Hybridwanne	Hybridwanne		
Produkt	Behälterglas	•	•				
Investition Neubau ^{c)}	205,5	164,4	205,5	205,5	205,5	EUR/t _{Kap.}	
Investition Modernisierung	137,0	109,6	137,0	137,0	137,0	EUR/t _{Kap.}	
Minimale Investition Neubau	205,5	164,4	205,5	205,5	205,5	EUR/t _{Kap.}	
Min. Investition Modernisierung	137,0	109,6	137,0	137,0	137,0	EUR/t _{Kap.}	
TRL	9	< 4 - 9	< 4	< 7	< 4	-	
Energieträger 1	Erdgas	Strom	EE-Wasserstoff	Strom	Strom	-	
Energieträger 2	Strom	keiner	Strom	EE-Methan	EE-Wasserstoff	-	
Energieträger 3	keiner	keiner	keiner	keiner	keiner	-	
Spezifischer Energiebedarf 1	1,130	0,760	1,130	0,640	0,640	MWh/t _{Pr.}	[1-2]; [5] [6]
Spezifischer Energiebedarf 2	0,130	0,000	0,130	0,160	0,160	MWh/t _{Pr.}	[1-2]; [5]
Spezifischer Energiebedarf 3	0,000	0,000	0,000	0,000	0,000	MWh/t _{Pr.}	
Min. spezifischer Energiebedarf	0,889	0,760	0,889	0,800	0,800	MWh/t _{Pr.}	[1-2]; [5] [6]
Prozessbedingte Emissionen	0,081	0,081	0,081	0,081	0,081	t _{CO2} /t _{Pr.}	[3]
Betriebs- und Wartungskosten	10,3	8,2	10,3	10,3	10,3	EUR/t _{Kap.}	
Abschreibungszeitraum	15	7	15	15	15	a	[7-8]
Anlagenlebensdauer	15	7	15	15	15	a	[7-8]
Repräsentative Kapazität ^{d)}	80.000	40.000	80.000	80.000	80.000	t _{Jahresleistung}	[9]
Auslastung	0,90	0,90	0,90	0,90	0,90	1,00	[4]
Anteil Bestand 2020	100%	0%	0%	0%	0%	%	
Verfügbar ab	2020	2020	2030	2020	2030		
Verfügbar bis	2050	2050	2050	2050	2050		

Annahmen, Legende und Quellen siehe nachfolgende Seite

Exemplarische Kenndaten für die ökonomische Betrachtung Anwendung 3: Kontinuierliches Schmelzen Behälterglas

Anmerkungen und Annahmen:

Angaben beziehen sich auf die Kapazität "t_{Kan}." oder die Produktionsmenge "t_{Pr}", Bezugsgröße Behälterglas

Bei den Datensätzen handelt es sich um gerundete Mittelwerte aus den unten aufgeführten Quellen.

Sofern keine gesicherten Werte im Rahmen der Studie erhoben werden können werden die folgenden Annahmen getroffen:

Die Investitionskosten der Alternativtechnik entsprechen den Investitionskosten der Referenztechnik.

Die minimalen Investitionskosten einer Technik entsprechen den Investitionskosten der Technik.

Der spezifische Energiebedarf der Alternativtechnik entspricht dem (summierten) Energiebedarf der Referenztechnik.

Der minimale spezifische Energiebedarf einer Technik entspricht dem summierten Energiebedarf der Technik.

Die prozessbedingten Emissionen, Betriebs- und Wartungskosten, Abschreibungszeitraum, Modernisierungszyklus sowie die repräsentative Kapazität der Alternativtechnik entsprechen den Werten der Referenztechnik.

Für eine TRL < 3 wird eine Verfügbarkeit der Technik ab dem Jahr 2040 angenommen.

Für eine TRL < 9 und ≥ 3 wird eine Verfügbarkeit der Technik ab dem Jahr 2030 angenommen.

Legende:

- a) Der Anteil der EZH bei der Erdgasbeheizung wird mit 10 % angenommen
- b) Betrachtung einer kleinen voll-elektrischen Schmelzwanne (< 100 t/d) mit Cold-Top-Technologie
- c) Berechnung der Investitionskennzahlen: Kosten für den Neubau und Modernisierung für Referenztechnik (aus Pressemitteilungen abgeschätzt): 45 Mio. EUR (Neubau), 30 Mio. EUR (Modernisierung); Kosten für die voll-elektrische Schmelzwanne werden mit 20 % geringer angenommen; Kosten für Wasserstoffbeheizte Schmelzwanne sowie für Hybridwanne werden identisch zur Referenztechnik angenommen; Modernisierungskosten werden mit 2/3 der Investitionskosten angenommen; Berechnung der Betriebs- und Wartungskosten: 5 % der Investitionskosten;
- d) Berechnung der Repräsentativen Kapazität: Referenztechnik, Wasserstoffbeheizte Schmelzwanne und Hybridwanne: 200 t/d Kapazität (entspricht dem Durchschnitt in der Behälterglasindustrie); Voll-elektrische Schmelzwanne: 100 t/d Kapazität (Annahme einer erprobten kleinen voll-elektrischen Schmelzwanne mit Cold-Top-Technologie)

Quellen:

[1] (Gitzhofer 2007); [2] (VDI 2578); [3] (Umweltbundesamt (UBA) 2020) [4] (Fleischmann et al. 2019) [5] (Nikolaus SORG GmbH & Co. KG 2020) [6] (Reynolds 2018) [7] (Fleischmann 2019) [8] (Scalet et al. 2013) [9] (Brunke 2017)

Zusammenfassung und F&E Bedarf

Der Anlagenpark in Deutschland ist vielfältig.

- Ein Großteil der Anlagen ist durch einen Durchsatz von weniger als 20 t/h bei einer Leistung < 20 MW gekennzeichnet.
- Eine vollständige Elektrifizierung insbesondere für Anlagen mit einem geringen Durchsatz und vergleichsweise geringe Prozesstemperatur ist bereits SdT.
- Mit zunehmender Produktionskapazität der Anlage und Prozesstemperatur werden die Möglichkeiten einer vollständigen Elektrifizierung aufgrund der geringeren Heizleistung im Vergleich zur Brennstoffbeheizung limitiert.
- Die Beheizung mit Wasserstoff befindet sich für die betrachteten Anwendungen im (fortgeschrittenen) Entwicklungsstadium.
- Forschung und Entwicklung ist notwendig um die Möglichkeiten einer (anteiligen) Elektrifizierung weiter zu erschließen und den Einsatz von H₂ weiter zu erproben.

Energiewende in der Thermoprozesstechnik

hybrid-heating@iob.rwth-aachen.de www.hybrid-heating.de

Vielen Dank für Ihre Aufmerksamkeit

Kontakt und Ansprechpartner:

Dr.-Ing. Christian Schwotzer

RWTH Aachen University Institut für Industrieofenbau und Wärmetechnik Kopernikusstraße 10 52074 Aachen

Tel.: +49 241 80 26068

schwotzer@iob.rwth-aachen.de

www.iob.rwth-aachen.de

