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Objective & General idea

Objective:

Reduce the computational time and the required computational power to estimate the average
temperature distribution within an industrial furnace

Expected Benefits:

e Better understanding of heat transfer within furnace without measurement equipment
—> Digital sensor

» Better knowledge of fuel/ power consumption when changing operating conditions for new products
- Initial parametrization

» Estimation of product properties using temperature- property relationships

‘ How to implement this?

T
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Objective and General Idea

Idea: Simplified subdivision of geometrical domain into separate one- dimensional zones

Example: Tunnelfurnace producing stacked refractory bricks

1 & 2: side wall segments
3: ceiling segments

4: kiln cart platform

5: atmosphere segments
6: product stacks
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Geometrical & Mathematical Discretization
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Observed simulation geometry of furnace inside surfaces and product outside surfaces
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Geometrical & Mathematical Discretization

a) Furnace cross- section discretization

—  JAR T, layers
] b) Side wall and kiln cart platform
Q%0 discretization layers

U e .LQ
) e —— |

Heat can only be transferred along the respective one- dimensional zone and exchanged between different zones

T
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Geometrical & Mathematical Discretization

Discretization possibilities:
- What represents reality best?

-

1 U

(a) (b)

e tric discretizati Concentric representation in this case better because of low
a) Concentric discretization ——>

thermal conductivity of product material and stack measurements

b) Linear discretization

T
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Geometrical & Mathematical Discretization

ld T + md TP + ud T + rad T + rad, TR = RHS

¥
‘4//AT=RHS\

[ Trp1] [ 1
Trp2 %
Trp3 , o
T, sourceterm,; + accumulationterm, + radiationterms,
T, = sourceterm, + accumulationterm, + radiationterms,
....................................................... \\\
\ ‘s\ 1919, | sourcetermsiq919 + accumulationterms,q919 + radiationtermsigqg.
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Coefficient Matrix:
* Indicates connectivity between each cell
— Describes which cell can transfer heat to another cell
* Radiation terms are placed explicitly on RHS, thus
no communication between zones 1&2 and zones 6 are visible
* Coefficient matrix is dynamic
—> Different Stack patterns possible, resulting in a variation of
cell amount
* Source terms are placed explicitly on RHS
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Geometrical & Mathematical Discretization

Surface to Surface model:
* Radiation is a surface phenomenon and depends on how the surfaces are exposed to each other
—> Participating media are neglected

1) Energy Flux leaving a surface can be expressed as:

N N
Qout; = €0T;" + p; z FiiGoue; = Ji=Ei+(1—-¢) z Fi]j
j:l ]:1

2) This can be expressed in matrix form:

K] =E

g,0T;

E=le,0T

1 (61 —DF;; (5 —DF;3 (g1 —1F, (5 — 1DFgs ‘ ] [Ch
K = —

(62 = DFy 1 (&2 = DFy3 (62— DFyy (&5 — DFys q:2

J corresponds to the flux leaving the surface - net flux of surface can be computed T
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Geometrical & Mathematical Discret

Computation of view factor
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Geometrical & Mathematical Discretization

Computation of view factor

* Changing geometry if stack pattern of product changes

- Re- computation of view factor matrix required
* One matrix for each geometry required

— Highly time- consuming if performed on complete furnace
- Separation into representative regions and perform sub- computations
- While simulation runs, assembling of these regions into the current valid matrix
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Boundary Conditions & Results

Geometry Specifications:

e Length of furnace: 15.687 m

e Width of furnace: 2.35m — Only burning zone simulated
* Height of furnace: ~1.5m

Initial Conditions:

e Counter- current process gas stream

* Tinit of counter- current stream: 1300 K

» 11 of counter current stream: 0.1 kg/s

* Number of burner Pairs: 12

* Average power per burner: 85 kW — 205 kW

e Air number of burner: ~ 0.7 -0.8

* Initial temperature of product stacks, kiln cart:
~1200 K

* Product dwell time: 105 min

T
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Boundary Conditions & Results

Temperature profile of tracked kiln cart

--- measurement data at various
product stack surface locations

Simulation
@ Average surface temperature

@ Average core temperature

| | | \ \ \ J

72:00

73:00

74:00

75:00 76:00 77:00 78:00 79:00 80:00 81:00 82:00 83:00 84:00 85:00
Time

Stack 1 === Stack 2 === Stack 3 ===Stack 4 == MP1 == MP2 == MP3]

Simulated production time of 85 hours within of 340 seconds of computational time | ~T
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Boundary Conditions & Results

Direct comparison only between dashed lines and 1 possible!

—> Difference in temperature gradients

Possible Causes:

» Radiation Model (S2S)

» Secondary Reactions (excess air)

* Underestimation of heat transfer
coefficient
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Stack 1 === Stack 2 === Stack 3 ===Stack 4 == MP1 == MP2 == MP3]
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Outlook

* Analysis of heat transfer coefficient and dwell time
— Conduction of several simulations to evaluate impact on temperature profile

* Detailed measurement campaigns
- Increase confidence in data
- Yield data for analysis of secondary reactions

* Inclusion of secondary reactions
—> Excess air due to not airtight furnace
—> Sub- stoichiometric combustion provides fuel
— Reaction between excess air and remaining fuel cause secondary source terms, which increases
temperature gradient on the product inlet side

T
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Thank you for your attention
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