

Kompakte Hochleistungs-Rekuperatoren mit 3D-Druck-Bauteilen für höchste Anforderungen

Marco Fuchs¹, Wolfgang Bender², Philipp Schwarz³, Stephan Kabelac¹

¹Institut für Thermodynamik, Leibniz Universität Hannover ²Hülsenbusch Apparatebau GmbH & Co. KG ³Rosswag Engineering GmbH

3. Aachener Ofenbau- und Thermoprozess Kolloquium, 07. - 08.10.2021, Aachen

Agenda

- 1. Motivation
- 2. Design der beiden Wärmeübertrager
- 3. Prüfstand
 - Auswertungsmethode
- 4. Experimentelle Ergebnisse
- 5. Zusammenfassung & Ausblick

Entwickelt im Rahmen des Projektes:

MULTISCHIBZ

Gefördert durch: Koordiniert durch: Bundesministerium für Verkehr und digitale Infrastruktur ale Organisation Wasser und Brennstoffzellentechnologi Projektpartner thyssenkrupp sunfire ROSSWAG engineering DNV.GL Leibniz Universität

Hannover

100

Motivation

Entwickeln von Wärmeübertragern für neue Brennstoffe und für Effizienzsteigerungen von Prozessen

l l Leibniz l o 2 Universität l o o 4 Hannover

Design der beiden Wärmeübertrager

Kreuzgegenstrom-Wärmeübertrager "Rohrbündel 2.0"

- Steigerung der Leistung durch zusätzliche Flächen und Turbulenz
- Beibehalten der positiven thermo-mechanischen Eigenschaften der Rohrbündel-Ausführung
- Einsatz als Sicherheits-Wärmeübertrager

Gegenstrom-Wärmeübertrager "Plate-Fin"

- Variante für höchste Leistungen
- große innere Fläche
- Mechanisch stabile Ausführung durch "wie aus einem Guss"-Fertigung

Universität

Design des "Rohrbündel 2.0" Wärmeübertragers

Kreuzgegenstrom-Wärmeübertrager "Rohrbündel 2.0"

Design des "Rohrbündel 2.0" Wärmeübertragers

Kreuzgegenstrom-Wärmeübertrager "Rohrbündel 2.0"

Vorgenommenen Optimierungen

- rohrseitiger Einbau von Drallerzeugern zur Steigerung des Wärmeübergangs
 - Auswahl durch vorab durchgeführte Experimente & Berechnungen

Leibniz Universität

Hannover

1004

Kreuzgegenstrom-Wärmeübertrager "Rohrbündel 2.0"

Vorgenommenen Optimierungen

mantelseitig strömungsoptimierte Rohrform sowie Flächenvergrößerung durch Rippen

Leibniz Universität

Design des "Rohrbündel 2.0" Wärmeübertragers

Kreuzgegenstrom-Wärmeübertrager "Rohrbündel 2.0"

Vorgenommenen Optimierungen

mantelseitig strömungsoptimierte Rohrform sowie Flächenvergrößerung durch Rippen

Gegenstrom-Wärmeübertrager "Plate-Fin"

- Der Wärmeübertrager ist als reiner Gegenströmer ausgeführt
- Der hier gezeigte Wärmeübertrager ist aus insgesamt 11 Schichten zusammengesetzt
 - > 5 für die Heißgasseite
 - ➢ 6 für die Kaltgasseite
- Das gesamte Bauvolumen beträgt <6 Liter

Gegenstrom-Wärmeübertrager "Plate-Fin"

- Der Wärmeübertrager ist als reiner Gegenströmer ausgeführt
- Der hier gezeigte Wärmeübertrager ist aus insgesamt 11 Schichten zusammengesetzt
 - > 5 für die Heißgasseite
 - ➢ 6 für die Kaltgasseite
- Das gesamte Bauvolumen beträgt <6 Liter

Geometrie der wärmeübertragenden Fläche

- "wavy-fin" basierter Wärmeübertrager
- Rippengeometrie mittels Literaturkorrelationen und CFD Berechnungen optimiert

Gegenstrom-Wärmeübertrager "Plate-Fin"

- Der Wärmeübertrager ist als reiner Gegenströmer ausgeführt
- Der hier gezeigte Wärmeübertrager ist aus insgesamt 11 Schichten zusammengesetzt
 - ➢ 5 für die Heißgasseite
 - ➢ 6 für die Kaltgasseite
- Das gesamte Bauvolumen beträgt <6 Liter

Geometrie der wärmeübertragenden Fläche

- "wavy-fin" basierter Wärmeübertrager
- Rippengeometrie mittels Literaturkorrelationen und CFD Berechnungen optimiert
 - Minimales Bauvolumen
 - Spezifische thermische Leistung
 - Spezifischer Druckverlust

Kostenfunktion f Sicherheitsfaktor C_{rf}

Optimierung mittels Matlab Algorithmus *particleswarm* Rippenparameter (Abstand, Amplitude, Wellenlänge)

Gegenstrom-Wärmeübertrager "Plate-Fin"

- Der Wärmeübertrager ist als reiner Gegenströmer ausgeführt
- Der hier gezeigte Wärmeübertrager ist aus insgesamt 11 Schichten zusammengesetzt
 - ➢ 5 für die Heißgasseite
 - ➢ 6 für die Kaltgasseite
- Das gesamte Bauvolumen beträgt <6 Liter

Geometrie der wärmeübertragenden Fläche

- "wavy-fin" basierter Wärmeübertrager
- Rippengeometrie mittels Literaturkorrelationen und CFD Berechnungen optimiert
 - Minimales Bauvolumen
 - Spezifische thermische Leistung
 - Spezifischer Druckverlust

Rippenparameter (Abstand, Amplitude, Wellenlänge)

Sicherheitsfaktor C_{rf}

Matlab Algorithmus particleswarm

Optimierung mittels

Kostenfunktion f

Institut für Thermodynamik

Aufbau Prüfstand & Wärmeübertrager

Wärmeübertrager

- 50mm mikroporöse Dämmung
- Zusätzliche Bohrungen für Wandthermoelemente im Wärmeübertrager (nur Plate-Fin)

Temperaturmessung

Einfluss der Wärmestrahlung auf Temperaturmessung reduzieren

- Kombination von doppeltem Strahlungsschutz und externer Beheizung
- Regelung der externen Heizung durch Thermoelemente auf der Wandoberfläche und an dem Heizdraht

170.00

160.00 150.00

140.00

700

800

Temperaturmessung

Einfluss der Wärmestrahlung auf Temperaturmessung reduzieren

- Kombination von doppeltem Strahlungsschutz und externer Beheizung
- Regelung der externen Heizung durch Thermoelemente auf der Wandoberfläche und an dem Heizdraht

externe Beheizung um Messeinsatz angebracht

Institut für Thermodynamik

Auswertungsmethode

- Der Wärmeübertrager wird mittels zweier Methoden bewertet
 - Effektivität

$$\varepsilon = \frac{\dot{Q}}{\dot{Q}_{\max}} = \frac{\left(\dot{m} c_p\right)_{\text{cold}} \left(T_{\text{cold,out}} - T_{\text{cold,in}}\right)}{\left(\dot{m} c_p\right)_{\min} \left(T_{\text{hot,in}} - T_{\text{cold,in}}\right)}$$

Ergebnisse Effektivität & axiale Wärmeleitung

 Temperaturniveaus haben nur geringen Einfluss auf Effektivität

 Plate-Fin zeigt deutlich größere Abhängigkeit des Druckverlustes von der Strömungsgeschwindigkeit

Ergebnisse axiale Wärmeleitung

• Einfluss der axialen Wärmeleitung auf die Effektivität des Plate-Fin

Effeffeiktivätätio/ohenexiakia 14/ävläreheilteitugng

 Einfluss der axialen Wärmeleitung muss bei der Auslegung berücksichtigt warden!

Ergebnisse Wärmeübergangskoeffizienten beim Plate-Fin

 Abweichungen zwischen experimentellen und theoretischen Werten durch Messunsicherheiten begründet

 Paritätsplot ergibt bei Abweichungen zwischen -20 und +50% zwischen exp. und theo. kA-Werten

Zusammenfassung und Ausblick

- Ein "Plate-Fin" und ein Rohrbündel-Wärmeübertrager wurden ausgelegt, additiv hergestellt und experimentell untersucht
- Axiale Wärmeleitung wurde während des Design Prozesses des Plate-Fin berücksichtigt
- Ein multivariable Wilson-Plot ermöglicht die Bestimmung von Wärmeübergangskoeffizienten aus den Messdaten
- Der Plate-Fin Wärmeübertrager erreicht eine Effektivität von >80%, in den meisten Fällen > 87% 98%
- Der Wärmeübergangskoeffizient kann mittels einfacher Ansatzfunktionen beschrieben werden, auch wenn die Abweichung noch groß ist

Ausblick

- Weiteres Verbessern der entwickelten Strukturen für höhere Wärmeübergänge und geringere Druckverluste
- Verbessern der Temperaturmesstechnik um Abweichungen zu reduzieren
- Testen weiterer Ansatzfunktionen zur besseren Beschreibung der sich einstellenden Wärmeübergangskoeffizienten

Vielen Dank für die Aufmerksamkeit!

Leibniz Universität Hannover

Institut für Thermodynamik

M.Sc. Marco Fuchs

0511 762 14756

fuchs@ift.uni-hannover.de

Quellen

٠

٠

- [1] https://www.gasconnect.at/aktuelles/news-presse/positionen/news/detail/News/wasserstoffherstellung-wie-geht-pyrolyse [Zugegriffen: 27-Sep-2021]
- [2] https://www.toyota-media.de/blog/unternehmen/artikel/toyota-entwickelt-weltweit-ersten-wasserstoffbrenner-fur-industrie/text [Zugegriffen: 27-Sep-2021]
- [3] Leites, K.:MultiSchIBZ Projektbeschreibung, thyssenkrupp Marine Systems, 2021