

Fraunhofer Institute for Ceramic Technologies and Systems IKTS

# Erzeugung von Prozesswärme durch direkte Verbrennung von Brennstoffen an Sauerstoff-liefernden Keramiken

4. Aachener Ofenbau- und Thermoprozess-Kolloquium,17. – 18. 10. 2023 Olga Ravkina, Ralf Kriegel

olga.ravkina@ikts.fraunhofer.de

## **Outline** Fraunhofer

#### **1. Introduction**

- 2. Adsorbents for Oxygen: OSM
- 3. Membranes for Oxygen: MIEC

- 4. Direct Combustion at a Solid
- 5. R&D Projects for Heat and Power
- 6. Summary & Outlook









## Introduction

Working Group: High Temperature Membranes and Storage Materials

#### **Adsorbents**



#### Membranes





- low energy demand compared to thermal separation processes
- **ceramics** withstand:
  - agressive agents
  - high T, p
- special properties @high temperatures:
  - **O<sup>2-</sup>/H**<sup>+</sup> conductivity
  - electrical (n/p) conductivity
  - reversible gas adsorption





## Introduction

Comparison of Oxygen Production Technologies, Market and Applications





OSM – Oxygen Storage Materials

#### **Reversible O<sub>2</sub> Storage**

Perovskite: crystal structure with permanent & temporary O-Vacancies
 vacancy occupation depending on T, p<sub>02</sub>, chemical composition
 O<sub>2</sub> storage capacity:

themogravimetry (TG), TpD







OSM – Oxygen Transport by Bulk Diffusion, O<sub>2</sub> exchange, ...





Heat of Reaction for O<sub>2</sub> Incorporation (OSM oxidation) and O<sub>2</sub> Release (OSM reduction)



#### **Reaction Enthalpy**

- 20 350 kJ/mol O<sub>2</sub>
- depends on:
  - stoichiometry change
  - reducable metal ions/ composition
- $O_2$  exchange rate ~  $1/\Delta_R H$



Hydrogen Combustion @OSM – experimental Proof

#### Combustion of H<sub>2</sub> on solid OSM (BSCF5582, CSFM5555, 1 and 5 bar, TG, $\Delta m = m(O_2)$ )

• thermogravimetric measurement of  $O_2$  release and uptake caused by  $H_2$  dosage and combustion





Methane Combustion @OSM – experimental Proof

Combustion of CH<sub>4</sub> on solid OSM (BSCF5582, 1 bar, Infrared Spectrocopy, gas cuvette)

- CH<sub>4</sub> dosage by gas syringe,
- unburned fuel, but no CO
- total oxidation of a part of CH<sub>4</sub>
- regeneration by air
- repeated combustion on a regenerated OSM sample
- reproducible process





## **Adsorbents for Oxygen: Reactor**

OSM – Routes for Realization (SoA for Power Plants)

**CLC: Chemical Looping Combustion** 

- for Power plants with CO<sub>2</sub> capture: cycling of OSM in 2 fluidized bed reactors
- O<sub>2</sub> carrier: NiO, FeO, CuO, CO2/H2O FeTiO<sub>3</sub>... **> slow**  $O_2$  release **(a)** low  $p_{02}$  $\geq$  slow oxidation at the solid ≻unburned fuel in flue gas



#### CLOU: CLC with O<sub>2</sub> Uncoupling

- OSM: mixed oxides based on Perovskites
- > **fast**  $O_2$  release @ambient  $p_{O2}$ , faster combustion, less material, no unburned fuel

#### CAR (BOC, UK) – Chemical **Adsorption Reaction**

- gas flow switching of nonreactive sweep gases to 2 packed bed reactors!
- $>O_2$  enrichment and production

#### **GSC - Gas Switching Combustion**

CLOU + CAR: gas flow switching of reactive sweep gas (fuel) to 2 packed bed reactors!  $H_2O(g) + CO_2$  $\geq$  no fluidization  $\geq$  gas speed  $\downarrow$ CO<sub>2</sub> > small plants possible air  $\geq$  applicable for production of  $H_2O(I)$ heat with CO<sub>2</sub> capture fuel (CH₄)



Mixed Electronic Ionic Conductor Membrane – OSM shaped as a Membrane





CH<sub>4</sub> partial Oxidation in MBR – Syngas for Chemistry





Methane partial Oxidation – CH<sub>4</sub> partial vs. total Oxidation (Combustion)





MIEC for total Oxidation =  $CH_4$  Combustion with integrated  $CO_2$  Capture



#### $Ca_{0.5}Sr_{0.5}Fe_{0.2}Mn_{0.8}O_{3-\delta}$ developed 1998<sup>1</sup>

- Iow chemical expansion, stable in CO<sub>2</sub>
- O<sub>2</sub> flux below 1000 °C is low
- asymmetric membranes with improved O<sub>2</sub> flux available
- O<sub>2</sub> flux increases steadily with temperature
- comparable to high-flux MIEC at low T
- stable up to 1400 °C!

well suited for fuel combustion in MR (high and varying temperatures)



<sup>1</sup> Groschwitz, R., Kaps, Ch., Kriegel, R., Pippardt, U., Sommer, E., Voigt, I.: EP 1 110 594 B1, priority 10. 12. 1999

## **Direct Combustion at a Solid**

Direct Combustion of fuels at a solid Ceramic (OSM, MIEC)



no pure O<sub>2</sub> – less oxidative properties

- continuous
- sensitive (mechanical, cracks)



robust (mechanical, cracks)

## **R&D Projects for Heat & Power:**

OSM-Brenner: Erprobung von OSM für die Wärmeproduktion aus gasförmigen Brennstoffen<sup>1</sup>



<sup>1</sup> Erprobung von Sauerstoffspeichermaterialien (OSM) für die Wärmeproduktion aus gasförmigen Brennstoffen, AiF-IGF: 22675 BG /2 , 01/23 - 06/25



## **R&D Projects for Heat & Power:**

Power Production by self-pressurizing Combustion: HiPowAR<sup>1</sup>, DEMAH<sup>2</sup>

#### Power & Heat production with integrated CO<sub>2</sub> capture

- ICE (Internal Combustion Engine) with solid O<sub>2</sub> supply (MIEC, OSM) with self-acting pressure increase
- no energy demand for air compression! no for compression  $\rightarrow$  higher efficiency & concentrated CO<sub>2</sub>
- Combustion: HiPowAR: isobar Ammonia in MBR, DEMAH: isochor Hydrogen in packed bed Reactor



<sup>1</sup> Highly efficient Power Production by green Ammonia total Oxidation in a Membrane Reactor. grant agreement no. 951880; <sup>2</sup> Demonstration der direkten Erzeugung mechanischer Antriebsenergie aus H<sub>2</sub>., BMBF FKZ 03SF0644A

### **Summary**

#### **Direct Combustion at solid Ceramics**

- compared to Oxyfuel:
  - similar efficiency, fuel conversion, NO<sub>x</sub> emissions, CO<sub>2</sub> concentration
  - no costs or energy demand for Oxygen supply
  - Iower risks or endangements, no oxidizing potential like for pure O<sub>2</sub>
- easy adjustment of **fuel to air** ratio:
  - air excess related to solid ceramic (OSM, MIEC) necessary!
  - combustion consumes only the O<sub>2</sub> amount needed for total oxidation
  - no Lambda sensor necessary
- safe conversion of different fuels and fuel amounts without air adjustment
  promising process for:

CO<sub>2</sub> capture
 energy (cost) saving





## **Outlook** Start up direct Combustion at solid O<sub>2</sub> supply?

#### Direct Combustion needs 400 - 700°C @solid!

- **external heating** by conventional combustion?
  - additional costs for initial gas burner
  - Is the heat transfer fast enough?
- external electrical ignition heater? as before
- catalytic coating for distinct fuels ignition at room temperature (e.g. H<sub>2</sub>)
- microwave excitation of OSM/MIEC
- Internal electrical heating of OSM/MIEC!
  - very fast (: <10 s, up to 950 °C</pre>
- ➢ optimization of components:
  - restriction of resistivity variation (with T)
    - $\rightarrow$  chemical composition
  - thermal shock resistivity → geometry, porosity





# Kontakt

Dr. Olga Ravkina Hochtemperaturmembranen und -speicher Tel. +49 36601 9301-4905 Fax +49 36601 9301-3921 olga.ravkina@ikts.fraunhofer.de

Fraunhofer IKTS Michael-Faraday-Straße 1 07629 Hermsdorf www.fraunhofer.de





Fraunhofer Institute for Ceramic Technologies and Systems IKTS

# Vielen Dank für Ihre Aufmerksamkeit