# HYINHEAT project introduction

4. Aachener Ofenbau- und Thermoprozess-Kolloquium

Dr.-Ing. Nico Schmitz





# The project in brief

Title: Hydrogen technologies for decarbonization of

industrial heating processes

Acronym: HylnHeat

GAP No.: 101091456

Call: HORIZON-CL4-2022-TWIN-TRANSITION-01-17

Start/End: 01/01/2023 to 31/12/2026 (48 months)

Total budget: 23.96 Mio. €

EU contribution: 17,71 Mio. €

Coordinator: RWTH Aachen University





# Overall goals

- Significant reduction of  $CO_2$  emissions of the industrial processes with  $H_2$  heating
- NO<sub>x</sub> levels of the processes at least not higher than the equivalent fossil fuel based solutions
- 3 Improved energy efficiency of the industrial processes
- Significant reduction of  $H_2$  fuel consumption of the developed process with regards to the current fossil fuel demand
- 5 Competitive costs of the developed technologies





### The team

- 3 Steel and 5 Aluminium producers
- 9 Technology suppliers
- 4 Research and Technology organisations
- 4 Universities
- 2 European associations
- 1 Green Innovation Consultant & Marketing expert
- In total: 28 partners from 12 countries





# The partners



































Norwegian University of Science and Technology



















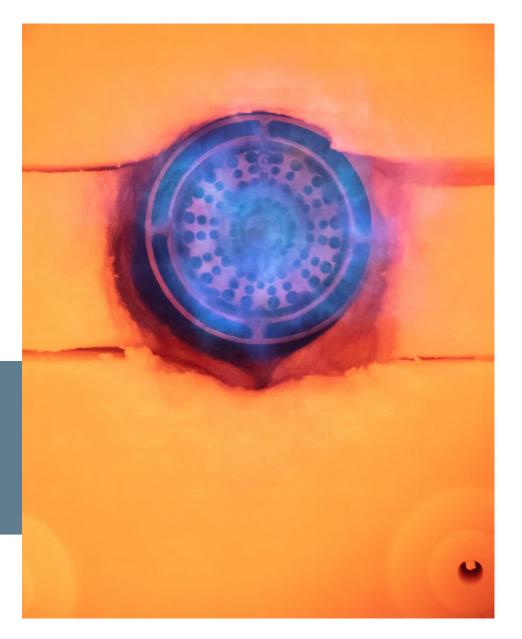















## The challenges

Gas-solid or gas-liquid interactions between furnace atmosphere and product | impact on refractory products and furnace materials | condensation of off-gas | heat transfer and temperature homogeinity | high-temperature chemistry for H2/O2 combustion | feed-forward and feed-back combustion control | higher combustion temperatures | higher NOx formation rates | NOx emission limit definition | emission measurement technology | safety and risk assessment | flame detection and monitoring

"HylnHeat uses a cross-sectorial approach addressing all the crucial tasks for an energy- and ressource efficient integration of  $\rm H_2$  in two large European sectors, Steel and Aluminium, to be an integral part of the heating solutions throughout the processes of the value chains of the two sectors"







# The objectives

#### Redesign heating processes for H<sub>2</sub> as fuel

8 demonstrators for  $H_2$  heating | 1 full off-gas system redesign | 1 greenfield reheating furnace design study | 2 retrofit design studies

#### Modify heating equipment and infrastructure for use of H<sub>2</sub>

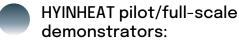
4 burner modifications and optimizations | measurement instrumentation development for fuel supply and combustion control |  $H_2$  compatible fuel supply implementation | refractory investigation and optimization

### Develop O<sub>2</sub> combustion processes to improve efficiency

6 demonstrators with pure O<sub>2</sub> as oxidizer | 1 demonstrator with oxygen-enhanced combustion

#### Integrate instrumentation to characterize fuel composition & flow

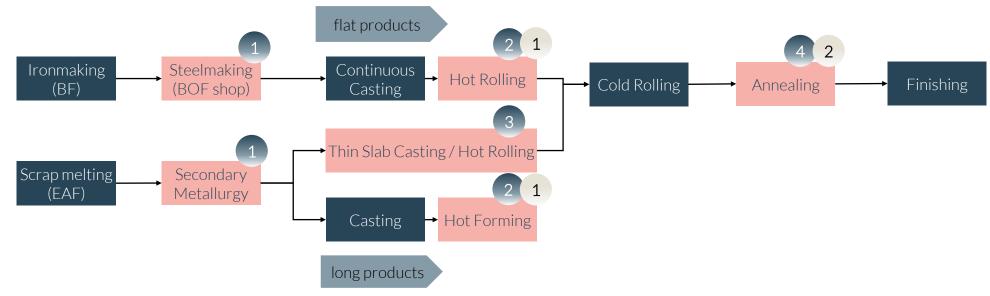
2 measurement technologies for fuel quality | combustion control instrumentation development | NOx emission measurement technology development | predictive emission monitoring


#### Prove economic viability compared to heating alternatives

Demonstrators as baseline | comparison on basis of KPIs | individual business case evaluation



### Value chain


#### Production processes Steel sector



- 1) ladle preheating
- 2) reheating
- 3) heating
- 4) annealing or galvanizing
- 5) liquid metal transfer
- 6) remelting/holding
- 7) refining
- 8) annealing

### HYINHEAT full-scale design studies:

- 1) reheating
- 2) annealing or galvanizing
- 3) remelting/holding
- 4) homogenizing and reheating

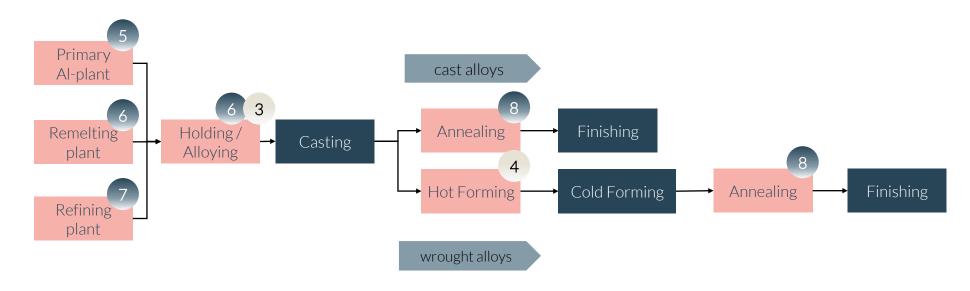




### Value chain

#### Production processes Aluminium sector




### HYINHEAT pilot/full-scale demonstrators:

- 1) ladle preheating
- 2) reheating
- 3) heating
- 4) annealing or galvanizing
- 5) liquid metal transfer
- 6) remelting/holding
- 7) refining
- 8) annealing



### HYINHEAT full-scale design studies:

- 1) reheating
- 2) annealing or galvanizing
- 3) remelting/holding
- 4) homogenizing and reheating





# The demonstrators - part 1







C-Tec, Voreppe, France | aluminium scrap remelting | retrofit from NG/O $_2$  to H $_2$ /O $_2$  burner technology | 6.2 kt CO $_2$  saving for 50 kt/a remelting capacity



Pilot rotary melting furnace



Befesa, Valladolid, Spain | aluminium scrap refining furnace | retrofit from NG/air to  $H_2/O_2$  burner technology | 2.7 kt  $CO_2$  savings for 40.5 kt/a refining capacity



Pilot radiant tube furnace





Arcelor Mittal, Gijón, Spain | heat treatment for steel/aluminium | retrofit from NG/air to  $H_2$ /air burner technology | 31.0 kt  $CO_2$  savings for 550 kt/a hot dip galvanizing line



Pilot walking beam furnace



SWERIM, Lulea, Sweden | steel reheating for hot rolling | retrofit from light oil/air to H2/air/O2 burner technology | 386 kt/a CO2 savings for 3100 kt/a reheating frunace



# The demonstrators - part 2



### Industrial liquid metal transfer heater



Mytilineos, Agios Nikolaos, Greece | liquid aluminium transfer | retrofit from NG/air to  $H_2/O_2$  burner technology | 0.3 kt/a  $CO_2$  savings



### Industrial ladle preheating station



Befesa, Valladolid, Spain | aluminium scrap refining furnace | retrofit from NG/air to  $H_2/O_2$  burner technology | 2.7 kt  $CO_2$  savings for 40.5 kt/a refining capacity



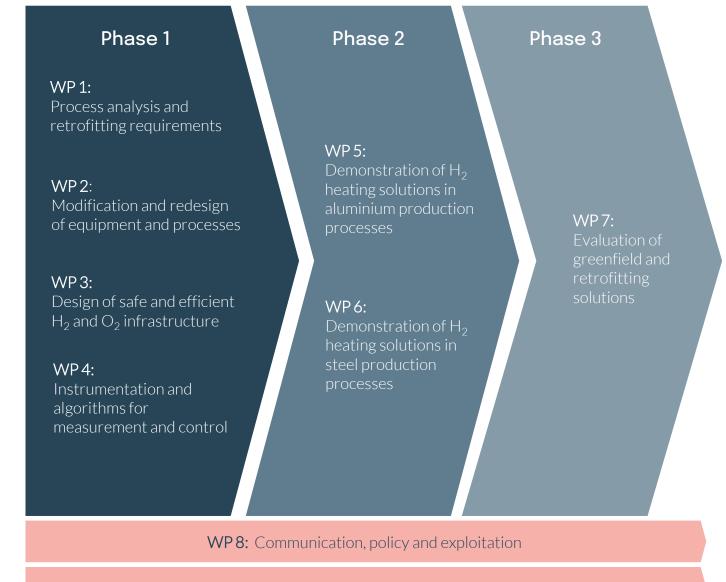
### Industrial tunnel heating furnace



ArcelorMittal, Sestao, Spain | steel thin slab heating | retrofit from NG/air to H<sub>2</sub>/air burner technology | 90.0 kt CO<sub>2</sub> savings for 1600 kt/a steel coil



### Industrial annealing furnace




Toyota, Walbrzych, Poland | aluminium part heat treatment | retrofit from NG/air to  $H_2/O_2$  burner technology | 0.1 kt/a  $CO_2$  savings



# The Workplan

- 9 work packages
- Phase 1: Technology development and adaption
- Phase 2: Implementation and validation
- Phase 3: Evaluation and analysis
- Accompanying dissemination and exploitation
- Consistent project and risk management



WP 9: Project coordination, management and reporting



# The timing

First peer-reviewed publication online (open access!):

NO<sub>x</sub> Emission Limits in a Fuel-Flexible and Defossilized Industry - Quo Vadis?



| WP No. | Work Package                                                                        | Lead     | 2023 |    |    |    | 2024 |    |    |    | 2025 |                             |                 | 2026             |       |            |
|--------|-------------------------------------------------------------------------------------|----------|------|----|----|----|------|----|----|----|------|-----------------------------|-----------------|------------------|-------|------------|
|        |                                                                                     |          | Q1   | Q2 | Q3 | Q4 | Q1   | Q2 | Q3 | Q4 | Q1   | Q2 Q3                       | Q4 Ç            | )1 Q2            | Q3    | Q4         |
| 1      | Process analysis and retrofitting requirements                                      | TECNALIA | ✓    | ✓  | ✓  |    |      |    |    |    |      | Deliver                     | ables           | 1.1 1            | 220   | 2110       |
| 2      | Modification and redesign of equipment and processes                                | LINDE    |      | ✓  | ✓  |    |      |    |    |    |      | Deliver<br>subr<br>D1.2 and | nitted<br>d D1. | 1. → V<br>3 will | VP1 , | a 1.3<br>✓ |
| 3      | Design of safe and efficient $H_2$ and $O_2$ infrastructure                         | POLIMI   |      | ✓  | ✓  |    |      |    |    |    |      |                             | SO              | on!              | DC 01 | iiine      |
| 4      | Instrumentation and algorithms for measurement and control                          | SICK     |      | ✓  | ✓  |    |      |    |    |    |      |                             |                 |                  |       |            |
| 5      | Demonstration of H <sub>2</sub> heating solutions in aluminium production processes | GHI      |      |    |    |    |      |    |    |    |      |                             |                 |                  |       |            |
| 6      | Demonstration of H <sub>2</sub> heating solutions in steel production processes     | CELSA    |      |    |    |    |      |    |    |    |      |                             |                 |                  |       |            |
| 7      | Evaluation of greenfield and retrofitting solutions                                 | NTNU     |      |    |    |    |      |    |    |    |      |                             |                 |                  |       |            |
| 8      | Communication, policy and exploitation                                              | EGEN     | ✓    | ✓  | ✓  |    |      |    |    |    |      |                             |                 |                  |       |            |
| 9      | Project coordination, management and reporting                                      | RWTH     | ✓    | ✓  | ✓  |    |      |    |    |    |      |                             |                 |                  |       |            |



### Get in touch



Dr.-Ing. Nico Schmitz Project Coordination Team +49 241 80-26064

schmitz@iob.rwth-aachen.de



Dr.-Ing. Thomas Echterhof Project Coordination Lead +49 241 80-25958 echterhof@iob.rwth-aachen.de



Dr.-Ing. Christian Schwotzer Project Coordination Team +49 241 80-26068 schwotzer@iob.rwth-aachen.de

www.hyinheat.eu



