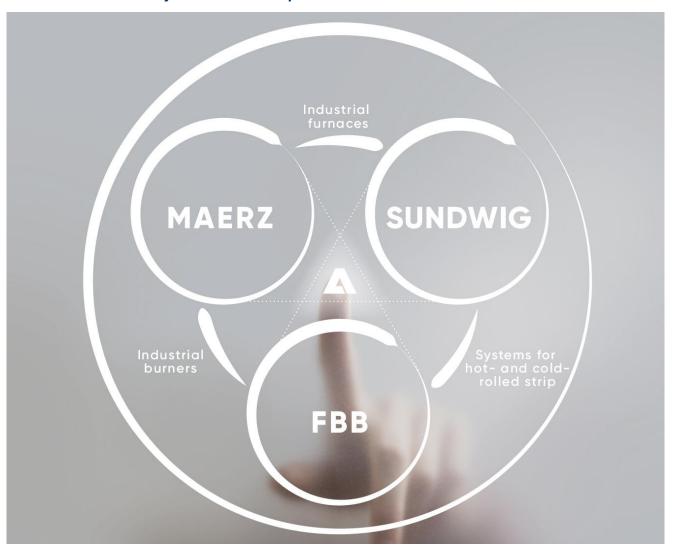


CHALLENGES AND OPPORTUNITIES IN MODERNIZING INDUSTRIAL FURNACES FOR THE GREEN TRANSITION

F. SCHECK, W. KLEIN, L. BROCKERHOFF, K. HORNIG

23.09.2025



INTRODUCTION AND CONTEXT

INTRODUCTION

AMG = 2021 joined competence of former A-SUNDWIG, A-MAERZ and A-FBB

- Preservation of product knowledge in the individual product groups
- Use of the established processes in the administrative functions
- Bundling of R&D and project management capacities
- Spatial consolidation of "FBB" and "MAERZ" in one office in Krefeld at ANDRITZ Küsters facility
- Relocation of burner production from Mönchengladbach to Hemer (HQ of former A-SUNDWIG)

INTRODUCTION AND CONTEXT

Importance of the modernizations of installed base of industrial furnaces

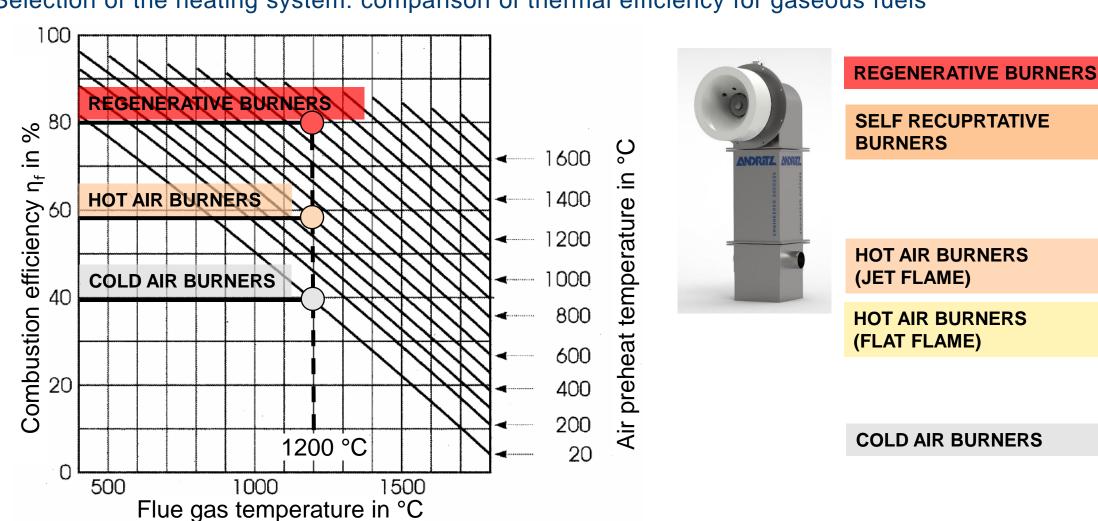
- Industrial sectors contribute ~30% of global GHG emissions.
- Process heating is a major source of emissions.
- Thermoprocessing plants rely heavily on fossil fuels.
- Modernization is driven by environmental and regulatory pressures.
- Key decarbonization pathways are
 - increasing efficiency
 - hydrogen combustion
 - electrification / hybridization
- quality, reliability and repeatability of the thermal process must at least be preserved when modernizing industrial furnaces

Furnace type	Initial conditions	After modernization
Continuous reheating furnace from '70s or '80s, open gas fired (NG)		
 Specific energy consumption for 1250°C discharging temperature 	550 kWh/t	380 kWh/t
NOx Emission (ref. 5% O ₂) at 1250 °C	480 mg/Nm³	180 mg/Nm³
Batch reheating furnace from '90s, open gas fired (NG)		
Idle consumption of gas fuel at 1250°C("Leerwert")	98 Nm³/h	48 Nm³/h
• NOx Emission (ref. 5% O ₂) at 1250°C	560 mg/Nm ³	220 mg/Nm ³

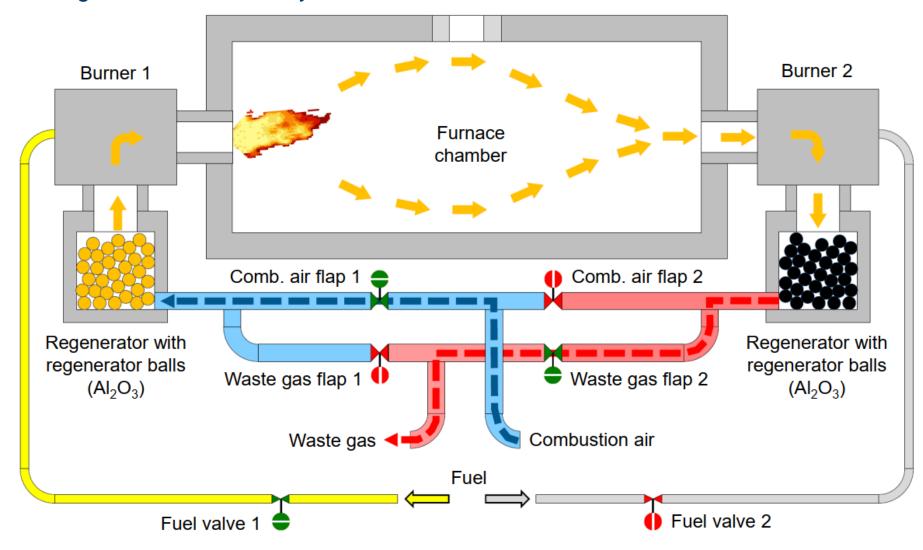
Examples of key parameters before and after modernization

Main technical challenges facing priori realization of modernization

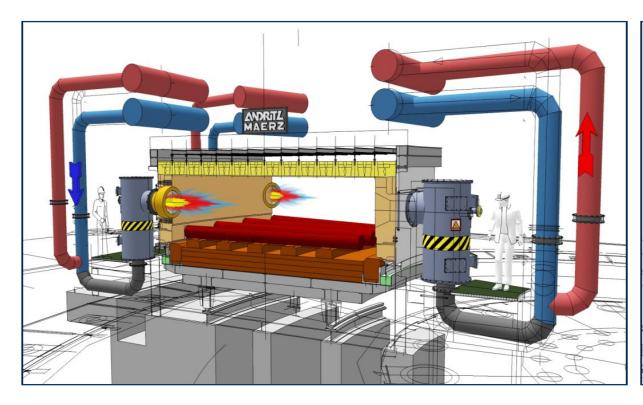
- Thermal performance optimization is critical.
 - Emission compliance: NOx, CO, and particulates.
 - Hydrogen combustion requires burner redesigns.
 - Electric heating has limitations in energy density and retrofitting.
 - Waste heat recovery systems must be adapted.
- Integration of new components requires interface engineering.
- Space restrictions, accessibility and unforeseen component defects.
- Material selection and mechanical stress considerations.
- Mostly not updated machine documentation, that doesn't fully represent the actual status
- Unknown contamination with asbestos

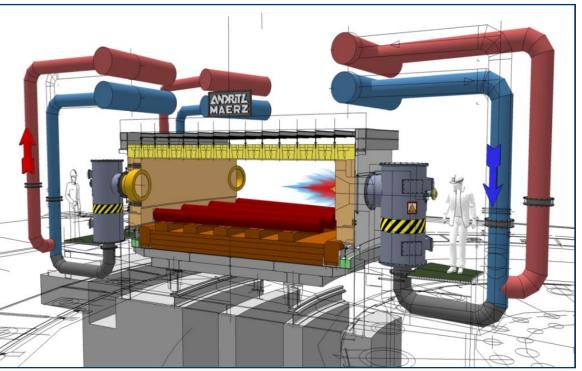


Furnace survey before determining of the final modernization measures


 η_f hight

Selection of the heating system: comparison of thermal efficiency for gaseous fuels

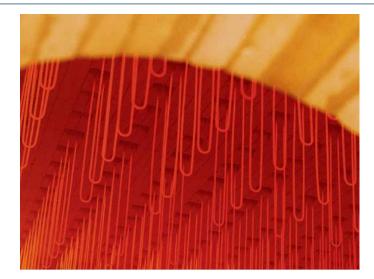



Principle of Regenerative Burner system

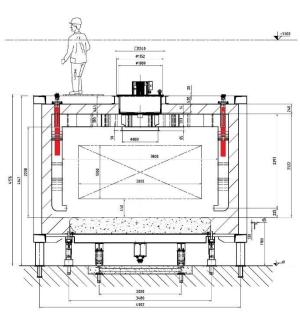
Principle of Regenerative Burner system for Rotary Hearth Furnace

Triplex Arrangement of Regenerative Burners for Rotary Hearth Furnace (two at outer side versus one at the inner side)

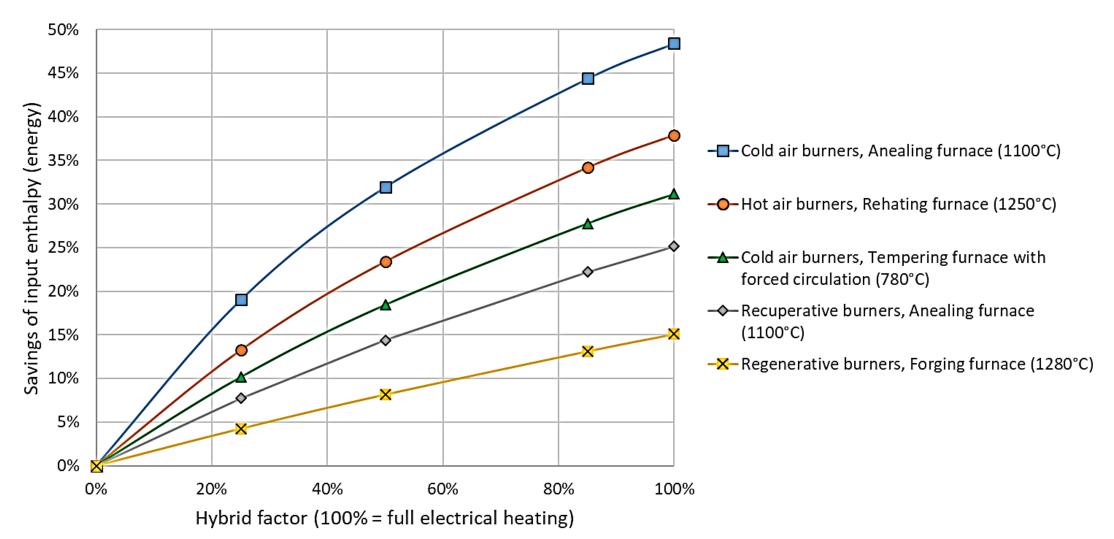
Typical heating elements for reheating and heat treatment furnaces

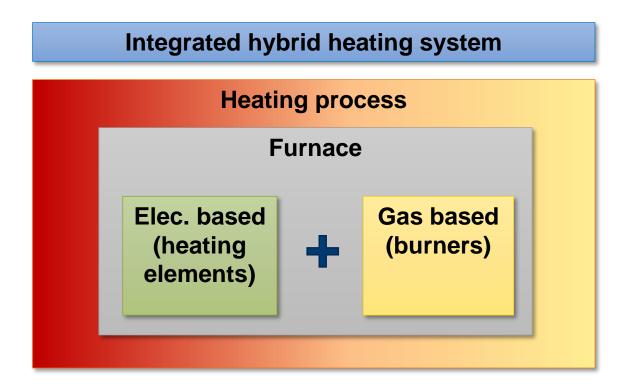

Metallic heating elements integrated in insulation lining or on ceramic holders

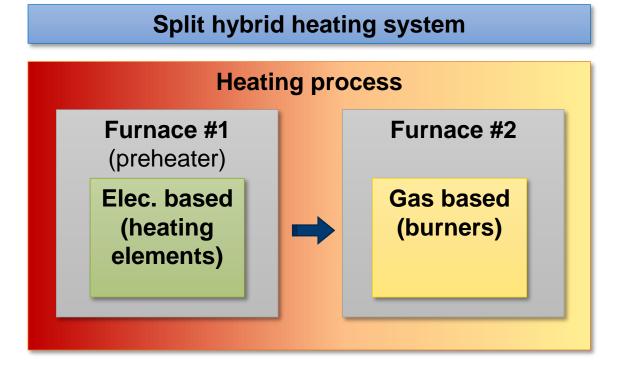
SiC heating elements



High performance metallic "hanging" heating elements


Closed heating elements (radiant tubes) and cartridge heating elements




Savings of input enthalpy (energy) of the thermal process by usage of hybrid heating systems

Two examples for different approaches of hybridization of an industrial furnace

CONVERSION TO SUSTAINABLE HEATING SYSTEM

Simplified approach

FIRST STEP

Maximization of the thermal efficiency:

- usage of regenerative or recuperative heating system
- optimization and higher automatization of the thermal process
- best-practice actions like renewing of refractory etc.

NEXT STEP(s)...

Conversion to the sustainably heating system by combination or single application of:

- electrical heating
- H₂ ready fix or flex heating system
- multi fuel heating system (i.e. bio gas)
- hybrid heating

Iterative reconsideration of planned measures:

- migration / combination
- resequencing / splitting

CONVERSION TO SUSTAINABLE HEATING SYSTEM

Challenges for electrical, H₂ and hybrid heating systems (in retrofit)

Electrical heating system	H ₂ ready heating system	Hybrid heating system
Limited surface output (large reheating furnaces require > 100 kW/m²)	Missing long-term experience with furnace components like refractory lining by combustion atmosphere with high H ₂ O content	Higher wear and aging of heating elements by atmosphere with high H ₂ O content
Replacement of bottom firing not practicable (scale handling in reheating furnaces)	Scale generation by combustion atmosphere with high H ₂ O content	Co-existence of the heating system of both types at one furnace (in case of integrated solution)
Infrastructure for electrical power supply (transformers etc.)	NO _x emission (can be 30% higher in present systems)	Interference between wiring for heating element and piping for burners
Complex wiring system for heating elements connections on furnace	Flexibility if H ₂ supply can not be permanently ensured	
Priority: Quality of the thermal process must be at least as good as for present situation		

03 ORGANIZATIONAL CHALLENGES

ORGANIZATIONAL CHALLENGES

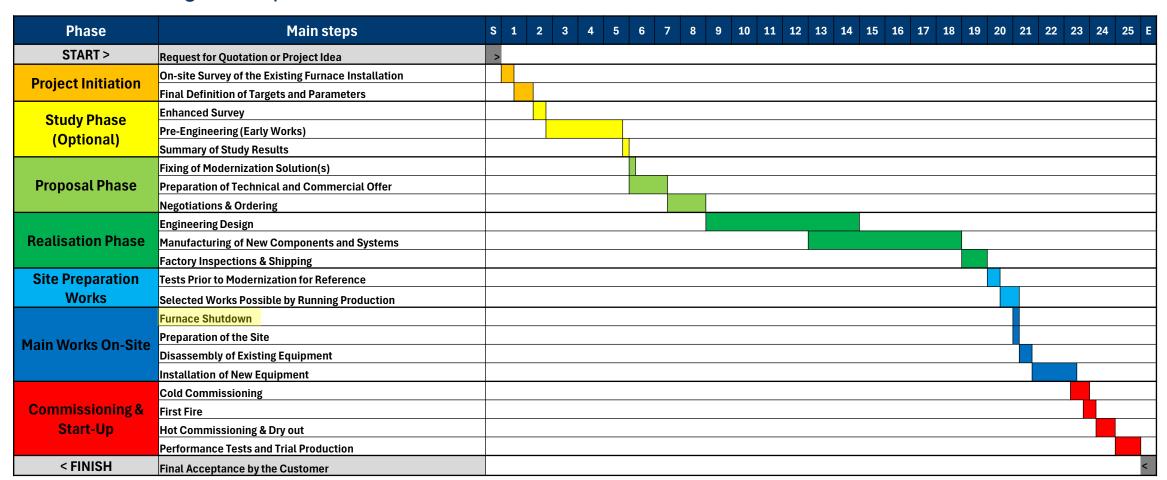
Main challenges from the organization viewpoint

- General risk of the unexpected physical conditions, discovered during the realization
- Space restrictions and unforeseen component defects.
- Coordination across departments and projects.
- Interdisciplinary collaboration is essential.
- Minimizing downtime through precise scheduling.
- Staged implementation and pilot testing.
- Commissioning requires detailed planning and training.
- Change management and organizational readiness.

Examples of "possible challenges" for the modernization

Blind / open end piping without note in machinery documentation

Old fiber or asbestos materials of for heat insulation


Operating "routine" with fully manual operated equipment

Safety issues "popping up" by safety analysis

ORGANIZATIONAL CHALLENGES

Possible resulting time span for full realization

ORGANIZATIONAL CHALLENGES

A

Example of findings of asbestos* survey in advance

Locations with asbestos containing materials

Recommendations

- Inform workers of asbestos presence.
- Avoid damaging materials (cutting, drilling, breaking).
- Removal must follow legal techniques:
 - Simple treatment (non-friable, intact)
 - Glove bag method
 - Sealed zone method
- Friable asbestos must be removed by a certified company.
- Consult internal/external prevention advisor and occupational physician.

X Asbestos-Containing Materials (2 samples)

- **1.Klingérite-type joint** (furnace roof)
 - **Asbestos type**: Chrysotile
 - **Friability**: Non-friable
 - Management advice: Long-term encapsulation or removal
- **2.Flexible fan duct** (furnace roof)
 - Asbestos type: Chrysotile
 - **Friability**: Friable
 - **Management advice**: Short-term encapsulation or removal

04 EXAMPLE OF AN INTEGRATION

EXAMPLE OF AN INTEGRATION

Example: modernization on large reheating furnace

Pusher Type Furnace for slabs from 1965 (!).

- Full retrofit of heating system incl. burners, control and automation system
- Upgrade to the latest standards (DIN EN ISO 13577-2)
- Modified arrangement of the roof burners for better temperature homogeneity and controllability of soaking zone
- Switch-off time of the furnace: 5 weeks

Guaranteed parameters

Energy consumption equal or better	1.4929 GJ/t (value before revamp of 1.8 GJ/t)
NOx equal or better than	200 mg/Nm³ for 3% reference O2 content
Scale generation equal or better	1.2% of charged material value (before revamp 2%)
Temperature homogeneity within the slab equal or better	+/- 20K (areas direct over skid profiles and nearby edges
	excluded)

before

after

EXAMPLE OF AN INTEGRATION

Example: modernization on car bottom forging furnace (conversion to AM-RegTakt)

Before: Hot Air Burners

more than 30% reduction of energy consumption and NOx emission

After: AMG Regenerative Flat Flame Burners

05 **OUTLOOK AND OPPORTUNITIES**

SUMMARY

Practical guidelines

- Leading rule: the high quality of the heating up process must (at least) be conserved
- ➤ Assuming the availability of **green electrical energy and / or green H2**, the conversion to sustainable heating system for reheating and heat treatment furnaces is **already** technical possible and is implemented for new-built and revamping ANDRITZ projects
- ➤ The first step in planning the conversion to a sustainable heating system or a new plant is the maximization of the thermal efficiency of the heating system and whole thermo-process
- > Revamps: for each application or furnace, the **unique solution** for conversion to sustainable heating system must be determined under consideration of multiple process-technological but also production planning criteria
- ➤ General statement: implementation of full (100%) electrical heating is easier for **low temperature heat treatment furnaces** (< 850°C) compared to **large high temperature reheating** furnaces. For certain types of furnaces, it is technologically and economically not reasonable.

OUTLOOK AND OPPORTUNITIES

➤ Modernization as a Key Driver for Industrial Decarbonization

Modernization is not only essential for achieving industrial decarbonization - it is often the most economical path to upgrading facilities with minimal disruption to production. By integrating **energy-efficient technologies**, industries can realize both short-term operational gains and long-term sustainability benefits.

➤ Strategic Planning and Risk Mitigation

To ensure successful modernization:


- Strategic alignment with corporate goals and adaptive planning are crucial.
- Comprehensive studies should be conducted to establish a valid planning base. These include extended surveys of the current state
 and numerical simulations.
- Pre-engineering activities such as 3D scanning

> Benefits of Continuous Investment

- Ongoing investment in the installed base through modernization:
- Enhances corporate reputation
- Strengthens regulatory compliance
- Demonstrates commitment to sustainability and innovation

> Infrastructure and Automation Considerations

- Validation of available space and local conditions is essential, often revealing the need for civil works.
- In most cases, automation systems must be fully renewed to align with modern standards and capabilities.

LEGAL DISCLAIMER

© ANDRITZ AG 2025

This presentation contains valuable, proprietary property belonging to ANDRITZ AG or its affiliates ("the ANDRITZ Group"), and no licenses or other intellectual property rights are granted herein, nor shall the contents of this presentation form part of any sales contracts which may be concluded between the ANDRITZ Group companies and purchasers of any equipment and/or systems referenced herein. Please be aware that the ANDRITZ Group actively and aggressively enforces its intellectual property rights to the fullest extent of applicable law. Any information contained herein (other than publicly available information) shall not be disclosed or reproduced, in whole or in part, electronically or in hard copy, to third parties. No information contained herein shall be used in any way either commercially or for any purpose other than internal viewing, reading, or evaluation of its contents by recipient and the ANDRITZ Group disclaims all liability arising from recipient's use or reliance upon such information. Title in and to all intellectual property rights embodied in this presentation, and all information contained therein, is and shall remain with the ANDRITZ Group. None of the information contained herein shall be construed as legal, tax, or investment advice, and private counsel, accountants, or other professional advisers should be consulted and relied upon for any such advice.

All copyrightable text and graphics, the selection, arrangement, and presentation of all materials, and the overall design of this presentation are © ANDRITZ Group 2025. All rights reserved. No part of this information or materials may be reproduced, retransmitted, displayed, distributed, or modified without the prior written approval of Owner. All trademarks and other names, logos, and icons identifying Owner's goods and services are proprietary marks belonging to the ANDRITZ Group. If recipient is in doubt whether permission is needed for any type of use of the contents of this presentation, please contact the ANDRITZ Group at welcome@andritz.com.